IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i5d10.1007_s11027-019-09894-1.html
   My bibliography  Save this article

Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains

Author

Listed:
  • Hardeep Singh

    (Oklahoma State University)

  • Brian K. Northup

    (USDA-ARS Grazinglands Research Laboratory)

  • Gurjinder S. Baath

    (Oklahoma State University)

  • Prashanth P. Gowda

    (University of Texas at Dallas)

  • Vijaya G. Kakani

    (Oklahoma State University)

Abstract

Challenges to sustainable agriculture are increasing with forecasts for greater climate variability, including rising temperatures, extreme precipitation events, and prolonged droughts. One important factor that contributes to the increasing climate variability is greenhouse gas emissions, including from agro-ecosystems. The US Environment Protection Agency indicates soil management and enteric fermentation from livestock contribute ~ 80% of total greenhouse gas from agriculture sector. Management practices conducive to greenhouse gas emissions, and possible mitigation strategies for the agricultural systems of Southern Great Plains, an integral part of the US beef industry, have not been thoroughly defined. The objective of this paper is to review and synthesize the literature regarding management practices conducive to emissions [carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4)] from croplands and grazing lands of Southern Great Plains, and potential strategies that may aid in greenhouse gas mitigation in the region. The results from different published studies evaluating such strategies were analyzed to determine whether these practices have potential in mitigating greenhouse gas emissions from agronomic and grazing lands. Based on the analysis, it can be recommended that increasing the amount of cropland managed by conservation tillage, fertilizer management, crop rotation systems, grazing management, and fertilizer amendments can be potential management strategies for greenhouse gas mitigation. As agro-ecosystems are very complex and reducing emissions using strategies in one sector may stimulate higher emissions in other sectors, these strategies require testing at the systems-level before they can be implemented to advise applied policies for the Southern Great Plains region.

Suggested Citation

  • Hardeep Singh & Brian K. Northup & Gurjinder S. Baath & Prashanth P. Gowda & Vijaya G. Kakani, 2020. "Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 819-853, May.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:5:d:10.1007_s11027-019-09894-1
    DOI: 10.1007/s11027-019-09894-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-09894-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-09894-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jim Giles, 2005. "Nitrogen study fertilizes fears of pollution," Nature, Nature, vol. 433(7028), pages 791-791, February.
    2. Zifei Liu & Yang Liu, 2018. "Mitigation of greenhouse gas emissions from animal production," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 627-638, August.
    3. Neville Millar & G. Robertson & Peter Grace & Ron Gehl & John Hoben, 2010. "Erratum to: Nitrogen fertilizer management for nitrous oxide (N 2 O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 411-411, April.
    4. Ribaudo, Marc & Delgado, Jorge & Hansen, LeRoy T. & Livingston, Michael J. & Mosheim, Roberto & Williamson, James M., 2011. "Nitrogen in Agricultural Systems: Implications for Conservation Policy," Economic Research Report 118022, United States Department of Agriculture, Economic Research Service.
    5. Taylor, Mykel R. & Brix, Marcus, 2013. "Profitability of Non-Irrigated Corn and Grain Sorghum Under Yield and Price Uncertainty," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 143071, Southern Agricultural Economics Association.
    6. Tolk, J.A. & Howell, T.A., 2008. "Field water supply:yield relationships of grain sorghum grown in three USA Southern Great Plains soils," Agricultural Water Management, Elsevier, vol. 95(12), pages 1303-1313, December.
    7. Neville Millar & G. Robertson & Peter Grace & Ron Gehl & John Hoben, 2010. "Nitrogen fertilizer management for nitrous oxide (N 2 O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(2), pages 185-204, February.
    8. Tong Wang & W. Richard Teague & Seong C. Park & Stan Bevers, 2015. "GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains," Sustainability, MDPI, vol. 7(10), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Wang & Juan Yang & Caiquan Duan, 2023. "Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China," Sustainability, MDPI, vol. 15(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hardeep Singh & Brian K. Northup & Gurjinder S. Baath & Prashanth P. Gowda & Vijaya G. Kakani, 0. "Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 819-853.
    2. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    3. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    4. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," PLOS Biology, Public Library of Science, vol. 9(8), pages 1-9, August.
    5. Gevan D. Behnke & Cameron M. Pittelkow & Emerson D. Nafziger & María B. Villamil, 2018. "Exploring the Relationships between Greenhouse Gas Emissions, Yields, and Soil Properties in Cropping Systems," Agriculture, MDPI, vol. 8(5), pages 1-26, April.
    6. Rooholla Moradi & Alireza Koocheki & Mehdi Nassiri Mahallati, 2014. "Adaptation of maize to climate change impacts in Iran," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(8), pages 1223-1238, December.
    7. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    8. Rose A Graves & Ryan D Haugo & Andrés Holz & Max Nielsen-Pincus & Aaron Jones & Bryce Kellogg & Cathy Macdonald & Kenneth Popper & Michael Schindel, 2020. "Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-30, April.
    9. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    10. Singh, Simratpal & Coppi, Luca & Wang, Zijian & Tenuta, Mario & Holländer, Hartmut M., 2019. "Regionalisation of nitrate leaching on pasture land in Southern Manitoba," Agricultural Water Management, Elsevier, vol. 222(C), pages 286-300.
    11. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    12. Aurore Philibert & Chantal Loyce & David Makowski, 2012. "Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    13. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Grace, Peter R. & Philip Robertson, G. & Millar, Neville & Colunga-Garcia, Manuel & Basso, Bruno & Gage, Stuart H. & Hoben, John, 2011. "The contribution of maize cropping in the Midwest USA to global warming: A regional estimate," Agricultural Systems, Elsevier, vol. 104(3), pages 292-296, March.
    15. Kecinski, Maik & Messer, Kent D. & Peo, Audrey J., 2018. "When Cleaning Too Much Pollution Can Be a Bad Thing: A Field Experiment of Consumer Demand for Oysters," Ecological Economics, Elsevier, vol. 146(C), pages 686-695.
    16. Amy W. Ando & Shibashis Mukherjee, 2012. "Benefits of pollution monitoring technology for greenhouse gas offset markets," Economics Bulletin, AccessEcon, vol. 32(1), pages 122-136.
    17. Neal, J.S. & Fulkerson, W.J. & Hacker, R.B., 2011. "Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 759-774, March.
    18. Blignaut, James & Meissner, Heinz & Smith, Hendrik & du Toit, Linde, 2022. "An integrative bio-physical approach to determine the greenhouse gas emissions and carbon sinks of a cow and her offspring in a beef cattle operation: A system dynamics approach," Agricultural Systems, Elsevier, vol. 195(C).
    19. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    20. Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:5:d:10.1007_s11027-019-09894-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.