IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6600-d572081.html
   My bibliography  Save this article

Decoupling Analysis between Economic Growth and Air Pollution in Key Regions of Air Pollution Control in China

Author

Listed:
  • Jing Li

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lipeng Hou

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lin Wang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Lina Tang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

Abstract

The Chinese government has implemented a number of environmental policies to promote the continuous improvement of air quality while considering economic development. Scientific assessment of the impact of environmental policies on the relationship between air pollution and economic growth can provide a scientific basis for promoting the coordinated development of these two factors. This paper uses the Tapio decoupling theory to analyze the relationship between regional economic growth and air pollution in key regions of air pollution control in China—namely, the Beijing–Tianjin–Hebei region and surrounding areas (BTHS), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD)—based on data of GDP and the concentrations of SO 2 , PM 10 , and NO 2 for 31 provinces in China from 2000 to 2019. The results show that the SO 2 , PM 10 , and NO 2 pollution in the key regions show strong and weak decoupling. The findings additionally indicate that government policies have played a significant role in improving the decoupling between air pollution and economic development. The decoupling between economic growth and SO 2 and PM 10 pollution in the BTHS, YRD, and PRD is better than that in other regions, while the decoupling between economic growth and NO 2 pollution has not improved significantly in these regions. To improve the relationship between economic growth and air pollution, we suggest that the governments of China and other developing countries should further optimize and adjust the structure of industry, energy, and transportation; apply more stringent targets and measures in areas of serious air pollution; and strengthen mobile vehicle pollution control.

Suggested Citation

  • Jing Li & Lipeng Hou & Lin Wang & Lina Tang, 2021. "Decoupling Analysis between Economic Growth and Air Pollution in Key Regions of Air Pollution Control in China," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6600-:d:572081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heming Wang & Seiji Hashimoto & Qiang Yue & Yuichi Moriguchi & Zhongwu Lu, 2013. "Decoupling Analysis of Four Selected Countries," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 618-629, August.
    2. Farhad Taghizadeh-Hesary & Farzad Taghizadeh-Hesary, 2020. "The Impacts of Air Pollution on Health and Economy in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-15, April.
    3. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    4. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo & Wang, Gewei, 2019. "Decoupling of emissions and GDP: Evidence from aggregate and provincial Chinese data," Energy Economics, Elsevier, vol. 77(C), pages 105-118.
    5. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    6. Azam, Muhammad, 2016. "Does environmental degradation shackle economic growth? A panel data investigation on 11 Asian countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 175-182.
    7. Farhad Taghizadeh-Hesary & Ehsan Rasoulinezhad & Naoyuki Yoshino & Youngho Chang & Farzad Taghizadeh-Hesary & Peter J. Morgan, 2021. "The Energy–Pollution–Health Nexus: A Panel Data Analysis Of Low- And Middle-Income Asian Countries," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 66(02), pages 435-455, March.
    8. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    9. Yao Bo Shi & Xin Xin Zhao & Chyi-Lu Jang & Chun-Ping Chang, 2019. "Decoupling effect between economic development and environmental pollution: A spatial-temporal investigation using 31 provinces in China," Energy & Environment, , vol. 30(5), pages 755-775, August.
    10. Zhe Wang & Lin Zhao & Guozhu Mao & Ben Wu, 2015. "Eco-Efficiency Trends and Decoupling Analysis of Environmental Pressures in Tianjin, China," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    11. Chen, Wenying & Xu, Ruina, 2010. "Clean coal technology development in China," Energy Policy, Elsevier, vol. 38(5), pages 2123-2130, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenhua Zhang & Jingxue Zhang & Yanchao Feng, 2021. "Assessment of the Carbon Emission Reduction Effect of the Air Pollution Prevention and Control Action Plan in China," IJERPH, MDPI, vol. 18(24), pages 1-13, December.
    2. Qianjin Wu & Zusheng Wu & Shanshan Li & Zichao Chen, 2023. "The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    3. Kai Zhang & Shunjie Wang & Shuyu Liu & Kunlun Liu & Jiayu Yan & Xuejia Li, 2022. "Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    4. Shuxin Mao & Hongbing Deng, 2022. "Regional Ecology Supporting Sustainable Development," Sustainability, MDPI, vol. 14(12), pages 1-5, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
    2. Sheng, Pengfei & Li, Jun & Zhai, Mengxin & Huang, Shoujun, 2020. "Coupling of economic growth and reduction in carbon emissions at the efficiency level: Evidence from China," Energy, Elsevier, vol. 213(C).
    3. Jingxing Liu & Hailing Li & Tianqi Liu, 2022. "Decoupling Regional Economic Growth from Industrial CO 2 Emissions: Empirical Evidence from the 13 Prefecture-Level Cities in Jiangsu Province," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    4. Zhuang, Mufan & Gao, Ziyan & Geng, Yong & Xiao, Shijiang, 2022. "Spatial distribution pattern of embodied natural resources use in China and its relationship with socioeconomic development: From an exergetic perspective," Resources Policy, Elsevier, vol. 79(C).
    5. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    6. Ma, Cong & Cheok, Mui Yee, 2022. "The impact of financing role and organizational culture in small and medium enterprises: Developing business strategies for economic recovery," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 26-38.
    7. Donghui Lv & Ruru Wang & Yu Zhang, 2021. "Sustainability Assessment Based on Integrating EKC with Decoupling: Empirical Evidence from China," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    8. Li, Yonglin & Zuo, Zhili & Cheng, Yue & Cheng, Jinhua & Xu, Deyi, 2023. "Towards a decoupling between regional economic growth and CO2 emissions in China's mining industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 80(C).
    9. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    10. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    11. Bai, Xiao & Wang, Kuan-Ting & Tran, Trung Kien & Sadiq, Muhammad & Trung, Lam Minh & Khudoykulov, Khurshid, 2022. "Measuring China’s green economic recovery and energy environment sustainability: Econometric analysis of sustainable development goals," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 768-779.
    12. Chang, Lei & Gan, Xiaojun & Mohsin, Muhammad, 2022. "Studying corporate liquidity and regulatory responses for economic recovery in COVID-19 crises," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 211-225.
    13. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    14. Tiejun Dai & Shuo Shan, 2020. "Path Analysis of Beijing’s Dematerialization Development Based on System Dynamics," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    15. Fan, Qiuyan & Hajiyeva, Aytan Merdan, 2022. "Nexus between energy efficiency finance and renewable energy development: Empirical evidence from G-7 economies," Renewable Energy, Elsevier, vol. 195(C), pages 1077-1086.
    16. Liu, Hongda & Huang, Feipeng & Huang, Jialiang, 2022. "Measuring the coordination decision of renewable energy as a natural resource contracts based on rights structure and corporate social responsibility from economic recovery," Resources Policy, Elsevier, vol. 78(C).
    17. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    18. repec:ces:ifodic:v:15:y:2017:i:3:p:50000000000064 is not listed on IDEAS
    19. Jiasha Fu & Fan Wang & Jin Guo, 2024. "Decoupling Economic Growth from Carbon Emissions in the Yangtze River Economic Belt of China: From the Coordinated Regional Development Perspective," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    20. Weiguo Fan & Mengmeng Meng & Jianchang Lu & Xiaobin Dong & Hejie Wei & Xuechao Wang & Qing Zhang, 2020. "Decoupling Elasticity and Driving Factors of Energy Consumption and Economic Development in the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    21. Tan, Hua & Iqbal, Nadeem & Wu, Zhengzhong, 2022. "Evaluating the impact of stakeholder engagement for renewable energy sources and economic growth for CO2 emission," Renewable Energy, Elsevier, vol. 198(C), pages 999-1007.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6600-:d:572081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.