IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v17y2013i4p618-629.html
   My bibliography  Save this article

Decoupling Analysis of Four Selected Countries

Author

Listed:
  • Heming Wang
  • Seiji Hashimoto
  • Qiang Yue
  • Yuichi Moriguchi
  • Zhongwu Lu

Abstract

We examine decoupling conditions of domestic extraction of materials, energy use, and sulfur dioxide (SO2) emissions from gross domestic product (GDP) for two BRIC (Brazil, Russia, India and China) countries (i.e., China and Russia) and two Organisation for Economic Co‐operation and Development (OECD) countries (Japan and the United States) during 2000–2007, using a pair of decoupling indicators for resource use (Dr) and waste emissions (De) and the decoupling chart, which can distinguish between absolute decoupling, relative decoupling, and non‐decoupling. We find that (1) during 2000–2007, decoupling between environmental indicators and GDP was higher in the two OECD countries as compared with the two BRIC countries. The key reason is that these countries were in different development stages with different economic growth rates. (2) Changes in environmental policies can significantly influence the degree of decoupling in a country. (3) China, Japan, and the United States were more successful in decoupling SO2 emissions from GDP than in decoupling material and energy use from GDP. The main reason is that, unlike resource use, waste emissions (e.g., SO2 emissions) can be reduced by effective end‐of‐pipe treatment. (4) The decoupling indicator is different from the changing rate of resource use and waste emissions. If two countries have different GDP growth rates, even though they may have similar values using the decoupling indicator, they may show different rates of change for resource use and waste emissions.

Suggested Citation

  • Heming Wang & Seiji Hashimoto & Qiang Yue & Yuichi Moriguchi & Zhongwu Lu, 2013. "Decoupling Analysis of Four Selected Countries," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 618-629, August.
  • Handle: RePEc:bla:inecol:v:17:y:2013:i:4:p:618-629
    DOI: 10.1111/jiec.12005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12005
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ces:ifodic:v:15:y:2017:i:3:p:50000000000064 is not listed on IDEAS
    2. Jing Li & Lipeng Hou & Lin Wang & Lina Tang, 2021. "Decoupling Analysis between Economic Growth and Air Pollution in Key Regions of Air Pollution Control in China," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    3. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    4. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
    5. Carla Rhode, 2017. "An Economy Transitioning from Brown to Green," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 15(03), pages 51-55, October.
    6. Zhang, Zilong & Chen, Xingpeng & Heck, Peter & Xue, Bing & Liu, Ye, 2015. "Empirical study on the environmental pressure versus economic growth in China during 1991–2012," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 182-193.
    7. Mariana Conte Grand, 2017. "Beyond the Question “Is there Decoupling?” A Decoupling Ranking," CEMA Working Papers: Serie Documentos de Trabajo. 622, Universidad del CEMA.
    8. Heming Wang & Qiang Yue & Zhongwu Lu & Helmut Schuetz & Stefan Bringezu, 2013. "Total Material Requirement of Growing China: 1995–2008," Resources, MDPI, vol. 2(3), pages 1-16, August.
    9. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    10. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    11. Carlos Scheel & Eduardo Aguiñaga & Bernardo Bello, 2020. "Decoupling Economic Development from the Consumption of Finite Resources Using Circular Economy. A Model for Developing Countries," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    12. Chen, Jiandong & Fan, Wei & Li, Ding & Liu, Xin & Song, Malin, 2020. "Driving factors of global carbon footprint pressure: Based on vegetation carbon sequestration," Applied Energy, Elsevier, vol. 267(C).
    13. Zhe Wang & Lin Zhao & Guozhu Mao & Ben Wu, 2015. "Eco-Efficiency Trends and Decoupling Analysis of Environmental Pressures in Tianjin, China," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    14. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    15. Katarzyna Frodyma & Monika Papież & Sławomir Śmiech, 2020. "Decoupling Economic Growth from Fossil Fuel Use—Evidence from 141 Countries in the 25-Year Perspective," Energies, MDPI, vol. 13(24), pages 1-21, December.
    16. Minghao Xu & Dingjiang Chen & Yadong Yu & Zengbo Chen & Yupeng Zhang & Bomin Liu & Yike Fu & Bing Zhu, 2021. "Assessing resource consumption at the subnational level: A novel accounting method based on provincial selected material consumption," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 580-592, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:17:y:2013:i:4:p:618-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.