IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2944-d342467.html
   My bibliography  Save this article

Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature

Author

Listed:
  • Khashayar Kazemzadeh

    (Transport and Roads, Department of Technology and Society, Faculty of Engineering, Lund University, Box118, 22100 Lund, Sweden)

  • Aliaksei Laureshyn

    (Transport and Roads, Department of Technology and Society, Faculty of Engineering, Lund University, Box118, 22100 Lund, Sweden)

  • Lena Winslott Hiselius

    (Transport and Roads, Department of Technology and Society, Faculty of Engineering, Lund University, Box118, 22100 Lund, Sweden)

  • Enrico Ronchi

    (Transport and Roads, Department of Technology and Society, Faculty of Engineering, Lund University, Box118, 22100 Lund, Sweden)

Abstract

Research into the bicycle level-of-service (BLOS) has been extensively conducted over the last three decades. This research has mostly focused on user perceptions of comfort to provide guidance for decision-makers and planners. Segments and nodes were studied first, followed by a network evaluation. Besides these investigations, several variables have also been utilized to depict the users’ perspectives within the BLOS field, along with other cycling research domains that simultaneously scrutinized the users’ preferences. This review investigates the variables and indices employed in the BLOS area in relation to the field of bicycle flow and comfort research. Despite general agreement among existing BLOS variables and the adopted indices, several important research gaps remain to be filled. First, BLOS indices are often categorized based on transport components, while scarce attention has been paid to BLOS studies in trip-end facilities such as bicycle parking facilities. The importance of these facilities has been highlighted instead within research related to comfort. Second, the advantages of separated bike facilities have been proven in many studies; however, scarce research has addressed the challenges associated with them (e.g., the heterogeneity within those facilities due to the presence of electric bikes and electric scooters). This issue is clearly noticeable within the research regarding flow studies. Furthermore, network evaluation (in comparison to segment and node indices) has been studied to a lesser extent, whereas issues such as connectivity can be evaluated mainly through a holistic approach to the system. This study takes one step toward demonstrating the importance of the integration of similar research domains in the BLOS field to eliminate the aforementioned shortcomings.

Suggested Citation

  • Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2944-:d:342467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    2. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    3. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    4. Sanders, Rebecca L., 2016. "We can all get along: The alignment of driver and bicyclist roadway design preferences in the San Francisco Bay Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 120-133.
    5. Nankervis, Max, 1999. "The effect of weather and climate on bicycle commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 417-431, August.
    6. Bai, Lu & Liu, Pan & Chan, Ching-Yao & Li, Zhibin, 2017. "Estimating level of service of mid-block bicycle lanes considering mixed traffic flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 203-217.
    7. Calvey, J.C. & Shackleton, J.P. & Taylor, M.D. & Llewellyn, R., 2015. "Engineering condition assessment of cycling infrastructure: Cyclists’ perceptions of satisfaction and comfort," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 134-143.
    8. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    9. Zohreh Asadi-Shekari & Mehdi Moeinaddini & Muhammad Zaly Shah, 2013. "Non-motorised Level of Service: Addressing Challenges in Pedestrian and Bicycle Level of Service," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 166-194, March.
    10. Griswold, Julia B. & Yu, Mengqiao & Filingeri, Victoria & Grembek, Offer & Walker, Joan L., 2018. "A behavioral modeling approach to bicycle level of service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 166-177.
    11. Rietveld, Piet & Daniel, Vanessa, 2004. "Determinants of bicycle use: do municipal policies matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 531-550, August.
    12. Eva Heinen & Ralph Buehler, 2019. "Bicycle parking: a systematic review of scientific literature on parking behaviour, parking preferences, and their influence on cycling and travel behaviour," Transport Reviews, Taylor & Francis Journals, vol. 39(5), pages 630-656, September.
    13. Tilahun, Nebiyou Y. & Levinson, David M. & Krizek, Kevin J., 2007. "Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 287-301, May.
    14. Eva Heinen & Kees Maat & Bert Wee, 2013. "The effect of work-related factors on the bicycle commute mode choice in the Netherlands," Transportation, Springer, vol. 40(1), pages 23-43, January.
    15. J. Hunt & J. Abraham, 2007. "Influences on bicycle use," Transportation, Springer, vol. 34(4), pages 453-470, July.
    16. Muñoz, Begoña & Monzon, Andres & López, Elena, 2016. "Transition to a cyclable city: Latent variables affecting bicycle commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 4-17.
    17. McClintock, Hugh & Cleary, Johanna, 1996. "Cycle facilities and cyclists' safety : Experience from Greater Nottingham and lessons for future cycling provision," Transport Policy, Elsevier, vol. 3(1-2), pages 67-77.
    18. Janice Kirner Providelo & Suely Penha Sanches, 2011. "Roadway and traffic characteristics for bicycling," Transportation, Springer, vol. 38(5), pages 765-777, September.
    19. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    20. Álvaro Fernández-Heredia & Sergio Jara-Díaz & Andrés Monzón, 2016. "Modelling bicycle use intention: the role of perceptions," Transportation, Springer, vol. 43(1), pages 1-23, January.
    21. Tom Thomas & Rinus Jaarsma & Bas Tutert, 2013. "Exploring temporal fluctuations of daily cycling demand on Dutch cycle paths: the influence of weather on cycling," Transportation, Springer, vol. 40(1), pages 1-22, January.
    22. Lowry, Michael B. & Furth, Peter & Hadden-Loh, Tracy, 2016. "Prioritizing new bicycle facilities to improve low-stress network connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 124-140.
    23. Noland, Robert B & Kunreuther, Howard, 1995. "Short-run and long-run policies for increasing bicycle transportation for daily commuter trips," Transport Policy, Elsevier, vol. 2(1), pages 67-79, January.
    24. Bergström, A. & Magnusson, R., 2003. "Potential of transferring car trips to bicycle during winter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 649-666, October.
    25. Cavill, Nick & Kahlmeier, Sonja & Rutter, Harry & Racioppi, Francesca & Oja, Pekka, 2008. "Economic analyses of transport infrastructure and policies including health effects related to cycling and walking: A systematic review," Transport Policy, Elsevier, vol. 15(5), pages 291-304, September.
    26. Nebiyou Tilahun & Kevin Krizek & David Levinson, 2007. "Trails, Lanes, or Traffic: Value of Different Bicycle Facilities Using Adaptive Stated-Preference Survey," Working Papers 200701, University of Minnesota: Nexus Research Group.
    27. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    28. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden," Transport Policy, Elsevier, vol. 41(C), pages 147-158.
    29. Gatersleben, Birgitta & Appleton, Katherine M., 2007. "Contemplating cycling to work: Attitudes and perceptions in different stages of change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 302-312, May.
    30. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    31. Fu, Liwei & Farber, Steven, 2017. "Bicycling frequency: A study of preferences and travel behavior in Salt Lake City, Utah," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 30-50.
    32. Cervero, Robert & Denman, Steve & Jin, Ying, 2019. "Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns," Transport Policy, Elsevier, vol. 74(C), pages 153-164.
    33. Parkin, John & Rotheram, Jonathon, 2010. "Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal," Transport Policy, Elsevier, vol. 17(5), pages 335-341, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dudziak Agnieszka & Caban Jacek, 2022. "The Urban Transport Strategy on the Example of the City Bike System in the City of Lublin in Relation to the Covid-19 Pandemic," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 1-12, January.
    2. Jonas Schmid-Querg & Andreas Keler & Georgios Grigoropoulos, 2021. "The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    3. Yang Bian & Ling Li & Huan Zhang & Dandan Xu & Jian Rong & Jiachuan Wang, 2021. "Categorizing Bicycling Environment Quality Based on Mobile Sensor Data and Bicycle Flow Data," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    4. Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    5. Wei Wang & Zhentian Sun & Liya Wang & Shanshan Yu & Jun Chen, 2020. "Evaluation Model for the Level of Service of Shared-Use Paths Based on Traffic Conflicts," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    6. Renata Żochowska & Marianna Jacyna & Marcin Jacek Kłos & Piotr Soczówka, 2021. "A GIS-Based Method of the Assessment of Spatial Integration of Bike-Sharing Stations," Sustainability, MDPI, vol. 13(7), pages 1-29, April.
    7. Liang, Xiao & Zhang, Tianyu & Xie, Meiquan & Jia, Xudong, 2021. "Analyzing bicycle level of service using virtual reality and deep learning technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 115-129.
    8. Dudziak Agnieszka & Caban Jacek, 2021. "Organization of Urban Transport Organization – Presentation of Bicycle System and Bicycle Infrastructure in Lublin," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 36-45, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    2. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    3. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    4. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    5. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    6. Ralph Buehler & John Pucher, 2012. "Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes," Transportation, Springer, vol. 39(2), pages 409-432, March.
    7. José Castillo-Manzano & Antonio Sánchez-Braza, 2013. "Managing a smart bicycle system when demand outstrips supply: the case of the university community in Seville," Transportation, Springer, vol. 40(2), pages 459-477, February.
    8. Márquez, Luis & Soto, Jose J., 2021. "Integrating perceptions of safety and bicycle theft risk in the analysis of cycling infrastructure preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 285-301.
    9. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    10. Verma, Meghna & Rahul, T.M. & Vinayak, Pragun & Verma, Ashish, 2018. "Influence of childhood and adulthood attitudinal perceptions on bicycle usage in the Bangalore city," Journal of Transport Geography, Elsevier, vol. 72(C), pages 94-105.
    11. Damant-Sirois, Gabriel & El-Geneidy, Ahmed M., 2015. "Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 113-125.
    12. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    13. Braun, Lindsay M. & Rodriguez, Daniel A. & Cole-Hunter, Tom & Ambros, Albert & Donaire-Gonzalez, David & Jerrett, Michael & Mendez, Michelle A. & Nieuwenhuijsen, Mark J. & de Nazelle, Audrey, 2016. "Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 164-183.
    14. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    15. Adsule, Poonam & Kadali, B Raghuram, 2024. "Analysis of contributing factors in decision to bicycle in developing countries context," Transport Policy, Elsevier, vol. 147(C), pages 50-58.
    16. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    17. Hyochul Park & Yong Lee & Hee Shin & Keemin Sohn, 2011. "Analyzing the time frame for the transition from leisure-cyclist to commuter-cyclist," Transportation, Springer, vol. 38(2), pages 305-319, March.
    18. Agarwal, Amit & Ziemke, Dominik & Nagel, Kai, 2020. "Bicycle superhighway: An environmentally sustainable policy for urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 519-540.
    19. Álvaro Fernández-Heredia & Sergio Jara-Díaz & Andrés Monzón, 2016. "Modelling bicycle use intention: the role of perceptions," Transportation, Springer, vol. 43(1), pages 1-23, January.
    20. Álvaro Fernández-Heredia & Sergio Jara-Díaz & Andrés Monzón, 2016. "Modelling bicycle use intention: the role of perceptions," Transportation, Springer, vol. 43(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2944-:d:342467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.