IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5634-d275886.html
   My bibliography  Save this article

Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model

Author

Listed:
  • Ruqin Yang

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
    Wuhan Natural Resources and Planning Information Center, Wuhan 430014, China)

  • Yaolin Liu

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

  • Yanfang Liu

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

  • Hui Liu

    (Wuhan Natural Resources and Planning Information Center, Wuhan 430014, China)

  • Wenxia Gan

    (School of Civil Engineering and Architecture, Wuhan Institution of Technology, Wuhan 430074, China)

Abstract

Public transport accessibility (PTA) is an essential index for evaluating the efficiency of urban public transport resource and public service. Improving public transport accessibility is considered as the most effective way of alleviating urban congestion and promoting urban sustainability. PTA can be divided into three types, which are access to stations, accessibility of networks and access to activities. This paper focuses on evaluating access to public transport service at stations, considering walking time to stations and waiting time for services at stations. Numerous studies have been carried out on evaluating the accessibility of public transport stations. When building accessibility evaluation model, rare has seen different public transport modes as an integrated system. Hence the topological structure and geometrical layout of the system are not considered. In this paper, factors like the configuration of the public transport system and the surrounding environment of stations are included for the evaluation. The centrality of station index (COS) is presented to describe the importance of stations in the integrated public transport system. The COS index is an improved combination of the gravity model and degree centrality index of the complex network. This index improves the degree centrality index by replacing the number of nodes with weighted connections between stations. By modeling public transport operation, configuration and surroundings of stations, a comprehensive public transport service accessibility index (CPTAI) is formulated to quantify accessibility at the community level. To compute this index, a network analysis model is firstly applied to find the nearest station for each point of interest (POI) by using ArcGIS desktop 10.2, and the transport service frequency at the nearest station is measured. Then Baidu Map API is employed to measure the impedance indexes between stations in the integrated public transport network. Activities covered by stations within a given distance are seen as the generation and attraction of trips in between the stations. Then a weighted gravity model and COS is presented to calculate the integrated service frequency (ISF) for each POI afterward. In the end, the index is converted to the community level, which is CPTAI. The experiment is carried out in Wuhan metropolitan area, Hubei, China. Smart card data (SCD) is utilized to evaluate CPTAI and examine the association between commuting trips by public transport and accessibility level within Wuhan metropolitan area. Experimental results show that CPTAI has a significant statistical association with trips by public transport.

Suggested Citation

  • Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5634-:d:275886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roger Bivand, 2008. "Implementing Representations Of Space In Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 1-27, February.
    2. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    3. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    4. Currie, Graham, 2010. "Quantifying spatial gaps in public transport supply based on social needs," Journal of Transport Geography, Elsevier, vol. 18(1), pages 31-41.
    5. Goldman, Todd & Gorham, Roger, 2006. "Sustainable urban transport: Four innovative directions," Technology in Society, Elsevier, vol. 28(1), pages 261-273.
    6. Hawas, Yaser E. & Hassan, Mohammad Nurul & Abulibdeh, Ammar, 2016. "A multi-criteria approach of assessing public transport accessibility at a strategic level," Journal of Transport Geography, Elsevier, vol. 57(C), pages 19-34.
    7. Velaga, Nagendra R. & Beecroft, Mark & Nelson, John D. & Corsar, David & Edwards, Peter, 2012. "Transport poverty meets the digital divide: accessibility and connectivity in rural communities," Journal of Transport Geography, Elsevier, vol. 21(C), pages 102-112.
    8. Robin Haynes & Andrew Lovett & Gisela Sünnenberg, 2003. "Potential Accessibility, Travel Time, and Consumer Choice: Geographical Variations in General Medical Practice Registrations in Eastern England," Environment and Planning A, , vol. 35(10), pages 1733-1750, October.
    9. Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), 2012. "Accessibility Analysis and Transport Planning," Books, Edward Elgar Publishing, number 14718.
    10. Cherry, Christopher, 2007. "Electric Bike Use in China and Their Impacts on the Environment, Safety, Mobility and Accessibility," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8bn7v9jm, Institute of Transportation Studies, UC Berkeley.
    11. Dominik Ziemke & Johan W. Joubert & Kai Nagel, 2018. "Accessibility in a Post-Apartheid City: Comparison of Two Approaches for Accessibility Computations," Networks and Spatial Economics, Springer, vol. 18(2), pages 241-271, June.
    12. HE, Ling-Yun & QIU, Lu-Yi, 2016. "Transport demand, harmful emissions, environment and health co-benefits in China," Energy Policy, Elsevier, vol. 97(C), pages 267-275.
    13. G H Pirie, 1979. "Measuring Accessibility: A Review and Proposal," Environment and Planning A, , vol. 11(3), pages 299-312, March.
    14. Delbosc, Alexa & Currie, Graham, 2011. "The spatial context of transport disadvantage, social exclusion and well-being," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1130-1137.
    15. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    16. Cheng, Yung-Hsiang & Chen, Ssu-Yun, 2015. "Perceived accessibility, mobility, and connectivity of public transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 386-403.
    17. Neutens, Tijs, 2015. "Accessibility, equity and health care: review and research directions for transport geographers," Journal of Transport Geography, Elsevier, vol. 43(C), pages 14-27.
    18. Zhang, Chunqin & Juan, Zhicai & Lu, Weite & Xiao, Guangnian, 2016. "Do the organizational forms affect passenger satisfaction? Evidence from Chinese public transport service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 129-148.
    19. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    20. Curtis, Carey, 2008. "Planning for sustainable accessibility: The implementation challenge," Transport Policy, Elsevier, vol. 15(2), pages 104-112, March.
    21. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    22. Wu, Belinda M. & Hine, Julian P., 2003. "A PTAL approach to measuring changes in bus service accessibility," Transport Policy, Elsevier, vol. 10(4), pages 307-320, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludmiła Filina-Dawidowicz & Mariusz Kostrzewski, 2022. "The Complexity of Logistics Services at Transshipment Terminals," Energies, MDPI, vol. 15(4), pages 1-26, February.
    2. Ng, Matthew Kok Ming & Roper, Josephine & Pettit, Christopher & Lee, Chyi Lin, 2021. "The Reflection of Income Segregation and Accessibility Cleavages in Sydney’s House Prices," SocArXiv 2psk5, Center for Open Science.
    3. Wang, Ning & Gao, Ying & He, Jia-tao & Yang, Jun, 2022. "Robustness evaluation of the air cargo network considering node importance and attack cost," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Apantri Peungnumsai & Hiroyuki Miyazaki & Apichon Witayangkurn & Sohee Minsun Kim, 2020. "A Grid-Based Spatial Analysis for Detecting Supply–Demand Gaps of Public Transports: A Case Study of the Bangkok Metropolitan Region," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    5. Li, Zhitao & Tang, Jinjun & Zhao, Chuyun & Gao, Fan, 2023. "Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Marc-Edouard Schultheiss, 2022. "Assessment of the Bus Transit Network: A Perspective from the Daily Activity-Travel Organization of Travelers," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    7. Bo Zhang & Liangyu Zhou & Zhiwen Yin & Ao Zhou & Jue Li, 2023. "Study on the Correlation Characteristics between Scenic Byway Network Accessibility and Self-Driving Tourism Spatial Behavior in Western Sichuan," Sustainability, MDPI, vol. 15(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    2. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    3. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    4. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    5. Maghrour Zefreh, Mohammad & Saif, Muhammad Atiullah & Esztergár-Kiss, Domokos & Torok, Adam, 2023. "A data-driven decision support tool for public transport service analysis and provision," Transport Policy, Elsevier, vol. 135(C), pages 82-90.
    6. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    7. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    8. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    9. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    10. Karner, Alex, 2018. "Assessing public transit service equity using route-level accessibility measures and public data," Journal of Transport Geography, Elsevier, vol. 67(C), pages 24-32.
    11. Md. Kamruzzaman & Tan Yigitcanlar & Jay Yang & Mohd Afzan Mohamed, 2016. "Measures of Transport-Related Social Exclusion: A Critical Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-30, July.
    12. Ruiz, Maurici & Segui-Pons, Joana Maria & Mateu-LLadó, Jaume, 2017. "Improving Bus Service Levels and social equity through bus frequency modelling," Journal of Transport Geography, Elsevier, vol. 58(C), pages 220-233.
    13. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    14. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    15. Chaberko Tomasz & Kretowicz Paweł, 2013. "Geographical input to local public transport planning in Poland," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 22(22), pages 35-46, December.
    16. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
    17. Pietro Lanzini & Andrea Stocchetti, 2017. "The evolution of the conceptual basis for the assessment of urban mobility sustainability impacts," Working Papers 02, Department of Management, Università Ca' Foscari Venezia.
    18. Apantri Peungnumsai & Hiroyuki Miyazaki & Apichon Witayangkurn & Sohee Minsun Kim, 2020. "A Grid-Based Spatial Analysis for Detecting Supply–Demand Gaps of Public Transports: A Case Study of the Bangkok Metropolitan Region," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    19. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    20. Xiaoshu Cao & Huiling Chen & Feiwen Liang & Wulin Wang, 2018. "Measurement and Spatial Differentiation Characteristics of Transit Equity: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5634-:d:275886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.