IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v17y2025i2d10.1007_s12469-024-00373-8.html
   My bibliography  Save this article

Modeling transit travel times for predicting equity improvements

Author

Listed:
  • Phillip R. Carleton

    (Oregon State University)

  • J. David Porter

    (Oregon State University)

Abstract

Equity in accessibility through public transit services is an important and growing concern in many countries, including the USA. There is much research that suggests methods and procedures for defining and measuring this equity, but there is little research that investigates the potential impacts of transit system service adjustments on equity. Using survey data estimates for racial minority populations and spatial data for goods and services locations, this research demonstrates an opportunity to predict transit equity improvements through a case study with the transit provider in Eugene, OR. In this case study, regression analysis is used to determine the effects of varying the number of transit vehicles assigned to existing transit routes at various times of the day on the travel times of prospective riders. A commonly employed needs gap method is then used to define current equity levels and to compare to the predicted equity levels after vehicle reassignment. The results of the case study suggest that even relatively small, targeted service adjustments can positively impact the levels of access equity seen in a transit system. This research concludes that even while trade-offs in equity levels are likely unavoidable, overall net equity improvements are possible through conscientious, data-driven redistribution of public transit assets.

Suggested Citation

  • Phillip R. Carleton & J. David Porter, 2025. "Modeling transit travel times for predicting equity improvements," Public Transport, Springer, vol. 17(2), pages 565-590, June.
  • Handle: RePEc:spr:pubtra:v:17:y:2025:i:2:d:10.1007_s12469-024-00373-8
    DOI: 10.1007/s12469-024-00373-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-024-00373-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-024-00373-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Fengjing & Sui, Yi & Yu, Xiang & Sun, Rencheng, 2019. "Spatio-temporal travel patterns of elderly people – A comparative study based on buses usage in Qingdao, China," Journal of Transport Geography, Elsevier, vol. 76(C), pages 178-190.
    2. Currie, Graham, 2010. "Quantifying spatial gaps in public transport supply based on social needs," Journal of Transport Geography, Elsevier, vol. 18(1), pages 31-41.
    3. Zack Aemmer & Andisheh Ranjbari & Don MacKenzie, 2022. "Measurement and classification of transit delays using GTFS-RT data," Public Transport, Springer, vol. 14(2), pages 263-285, June.
    4. Javad J. C. Aman & Myriam Zakhem & Janille Smith-Colin, 2021. "Towards Equity in Micromobility: Spatial Analysis of Access to Bikes and Scooters amongst Disadvantaged Populations," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    5. Sirapop Para & Thanachok Wirotsasithon & Thanisorn Jundee & Merkebe Getachew Demissie & Yoshihide Sekimoto & Filip Biljecki & Santi Phithakkitnukoon, 2024. "G2Viz: an online tool for visualizing and analyzing a public transit system from GTFS data," Public Transport, Springer, vol. 16(3), pages 893-928, October.
    6. Hao Wu & David Levinson & Somwrita Sarkar, 2019. "How transit scaling shapes cities," Nature Sustainability, Nature, vol. 2(12), pages 1142-1148, December.
    7. Sharma, Gajanand & Patil, Gopal R., 2021. "Public transit accessibility approach to understand the equity for public healthcare services: A case study of Greater Mumbai," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Smith, Robert W. & Bertolaccini, Kelly & Lownes, Nicholas E., 2021. "Improving transit access measures in affordable housing funding criteria," Transport Policy, Elsevier, vol. 106(C), pages 239-248.
    9. Carleton, Phillip R. & Porter, J. David, 2018. "A comparative analysis of the challenges in measuring transit equity: definitions, interpretations, and limitations," Journal of Transport Geography, Elsevier, vol. 72(C), pages 64-75.
    10. Karner, Alex, 2018. "Assessing public transit service equity using route-level accessibility measures and public data," Journal of Transport Geography, Elsevier, vol. 67(C), pages 24-32.
    11. Delbosc, Alexa & Currie, Graham, 2011. "The spatial context of transport disadvantage, social exclusion and well-being," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1130-1137.
    12. Ricciardi, Anthony Michael & Xia, Jianhong(Cecilia) & Currie, Graham, 2015. "Exploring public transport equity between separate disadvantaged cohorts: a case study in Perth, Australia," Journal of Transport Geography, Elsevier, vol. 43(C), pages 111-122.
    13. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    14. Alan T. Murray & Rex Davis, 2001. "Equity in Regional Service Provision," Journal of Regional Science, Wiley Blackwell, vol. 41(4), pages 557-600, November.
    15. Silva, Cecília & Bertolini, Luca & te Brömmelstroet, Marco & Milakis, Dimitris & Papa, Enrica, 2017. "Accessibility instruments in planning practice: Bridging the implementation gap," Transport Policy, Elsevier, vol. 53(C), pages 135-145.
    16. Song, Yena & Kim, Hyun & Lee, Keumsook & Ahn, Kwangwon, 2018. "Subway network expansion and transit equity: A case study of Gwangju metropolitan area, South Korea," Transport Policy, Elsevier, vol. 72(C), pages 148-158.
    17. Handley, John C. & Fu, Lina & Tupper, Laura L., 2019. "A case study in spatial-temporal accessibility for a transit system," Journal of Transport Geography, Elsevier, vol. 75(C), pages 25-36.
    18. Wei, Ran & Liu, Xiaoyue & Mu, Yongjian & Wang, Liming & Golub, Aaron & Farber, Steven, 2017. "Evaluating public transit services for operational efficiency and access equity," Journal of Transport Geography, Elsevier, vol. 65(C), pages 70-79.
    19. Nate Wessel & Michael J. Widener, 2017. "Discovering the space–time dimensions of schedule padding and delay from GTFS and real-time transit data," Journal of Geographical Systems, Springer, vol. 19(1), pages 93-107, January.
    20. Golub, Aaron & Martens, Karel, 2014. "Using principles of justice to assess the modal equity of regional transportation plans," Journal of Transport Geography, Elsevier, vol. 41(C), pages 10-20.
    21. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    2. Alex Karner & Rafael H. M. Pereira & Steven Farber, 2025. "Advances and pitfalls in measuring transportation equity," Transportation, Springer, vol. 52(4), pages 1399-1427, August.
    3. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    4. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. World Bank, 2021. "Connectivity for Human Capital," World Bank Publications - Reports 35185, The World Bank Group.
    7. Carleton, Phillip R. & Porter, J. David, 2018. "A comparative analysis of the challenges in measuring transit equity: definitions, interpretations, and limitations," Journal of Transport Geography, Elsevier, vol. 72(C), pages 64-75.
    8. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    9. Hussain, Etikaf & Bhaskar, Ashish & Chung, Edward, 2021. "A novel origin destination based transit supply index: Exploiting the opportunities with big transit data," Journal of Transport Geography, Elsevier, vol. 93(C).
    10. Goliszek Sławomir & Połom Marcin & Duma Patryk, 2020. "Potential and cumulative accessibility of workplaces by public transport in Szczecin," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 50(50), pages 133-146, December.
    11. Rui Xiao & Guofeng Wang & Meng Wang, 2018. "Transportation Disadvantage and Neighborhood Sociodemographics: A Composite Indicator Approach to Examining Social Inequalities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(1), pages 29-43, May.
    12. Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    13. Mwesigwa, Leonard & Yin, Zehui & Farber, Steven, 2024. "Evaluating the level of access and equity of the bus rapid transit (BRT) system: The case of Dar-Es-Salaam, Tanzania," Journal of Transport Geography, Elsevier, vol. 119(C).
    14. Costa, Cayo & Ha, Jaehyun & Lee, Sugie, 2021. "Spatial disparity of income-weighted accessibility in Brazilian Cities: Application of a Google Maps API," Journal of Transport Geography, Elsevier, vol. 90(C).
    15. Pyrialakou, V. Dimitra & Gkritza, Konstantina & Fricker, Jon D., 2016. "Accessibility, mobility, and realized travel behavior: Assessing transport disadvantage from a policy perspective," Journal of Transport Geography, Elsevier, vol. 51(C), pages 252-269.
    16. Md. Kamruzzaman & Tan Yigitcanlar & Jay Yang & Mohd Afzan Mohamed, 2016. "Measures of Transport-Related Social Exclusion: A Critical Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-30, July.
    17. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    18. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).
    19. Li, Shengxiao (Alex) & Duan, Hongyu (Anna) & Smith, Tony E. & Hu, Haoyu, 2021. "Time-varying accessibility to senior centers by public transit in Philadelphia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 245-258.
    20. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:17:y:2025:i:2:d:10.1007_s12469-024-00373-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.