IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2879-d232920.html
   My bibliography  Save this article

Agroforestry and Biodiversity

Author

Listed:
  • Ranjith P. Udawatta

    (The Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA)

  • Lalith Rankoth

    (The Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA)

  • Shibu Jose

    (The Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA)

Abstract

Declining biodiversity (BD) is aecting food security, agricultural sustainability, and environmental quality. Agroforestry (AF) is recognized as a possible partial solution for BD conservation and improvement. This manuscript uses published peer-reviewed manuscripts, reviews, meta-analysis, and federal and state agency documents to evaluate relationships between AF and BD and how AF can be used to conserve BD. The review revealed that floral, faunal, and soil microbial diversity were significantly greater in AF as compared to monocropping, adjacent crop lands, and within crop alleys and some forests. Among the soil organisms, arbuscular mycorrhizae fungi (AMF), bacteria, and enzyme activities were significantly greater in AF than crop and livestock practices. Agroforestry also creates spatially concentrated high-density BD near trees due to favorable soil-plant-water-microclimate conditions. The greater BD was attributed to heterogeneous vegetation, organic carbon, microclimate, soil conditions, and spatial distribution of trees. Dierences in BD between AF and other management types diminished with time. Evenly distributed leaves, litter, roots, dead/live biological material, and microclimate improve soil and microclimate in adjacent crop and pasture areas as the system matures. Results of the study prove that integration of AF can improve BD in agricultural lands. Selection of site suitable tree/shrub/grass-crop combinations can be used to help address soil nutrient deficiencies or environmental conditions. Future studies with standardized management protocols may be needed for all regions to further strengthen these findings and to develop AF establishment criteria for BD conservation and agricultural sustainability.

Suggested Citation

  • Ranjith P. Udawatta & Lalith Rankoth & Shibu Jose, 2019. "Agroforestry and Biodiversity," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2879-:d:232920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svoma, Bohumil M. & Fox, Neil I. & Pallardy, Quinn & Udawatta, Ranjith P., 2016. "Evapotranspiration differences between agroforestry and grass buffer systems," Agricultural Water Management, Elsevier, vol. 176(C), pages 214-221.
    2. Kabindra Adhikari & Alfred E Hartemink & Budiman Minasny & Rania Bou Kheir & Mette B Greve & Mogens H Greve, 2014. "Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
    3. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    4. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    5. Thomas P. Tomich & Meine van Noordwijk & Stephen A. Vosti & Julie Witcover, 1998. "Agricultural development with rainforest conservation: methods for seeking best bet alternatives to slash‐and‐burn, with applications to Brazil and Indonesia," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 159-174, September.
    6. J. H. Lawton & D. E. Bignell & B. Bolton & G. F. Bloemers & P. Eggleton & P. M. Hammond & M. Hodda & R. D. Holt & T. B. Larsen & N. A. Mawdsley & N. E. Stork & D. S. Srivastava & A. D. Watt, 1998. "Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest," Nature, Nature, vol. 391(6662), pages 72-76, January.
    7. Tomich, Thomas P. & van Noordwijk, Meine & Vosti, Stephen A. & Witcover, Julie, 1998. "Agricultural development with rainforest conservation: methods for seeking best bet alternatives to slash-and-burn, with applications to Brazil and Indonesia," Agricultural Economics, Blackwell, vol. 19(1-2), pages 159-174, September.
    8. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatrice Nöldeke & Etti Winter & Yves Laumonier & Trifosa Simamora, 2021. "Simulating Agroforestry Adoption in Rural Indonesia: The Potential of Trees on Farms for Livelihoods and Environment," Land, MDPI, vol. 10(4), pages 1-31, April.
    2. Staton, Tom & Breeze, Tom D. & Walters, Richard J. & Smith, Jo & Girling, Robbie D., 2022. "Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system," Ecological Economics, Elsevier, vol. 191(C).
    3. Hirth, Steffen & Drlička, Ivan & Paterson, Matthew & Thomas, Paul W., 2025. "Polycultural food production in temperate woodlands: Multifactorial benefits and political-economic barriers," Land Use Policy, Elsevier, vol. 156(C).
    4. Sikstus Gusli & Sri Sumeni & Riyami Sabodin & Ikram Hadi Muqfi & Mustakim Nur & Kurniatun Hairiah & Daniel Useng & Meine van Noordwijk, 2020. "Soil Organic Matter, Mitigation of and Adaptation to Climate Change in Cocoa–Based Agroforestry Systems," Land, MDPI, vol. 9(9), pages 1-18, September.
    5. Dmuchowski, Wojciech & Baczewska-Dąbrowska, Aneta H. & Gworek, Barbara, 2024. "The role of temperate agroforestry in mitigating climate change: A review," Forest Policy and Economics, Elsevier, vol. 159(C).
    6. Noémie Hotelier-Rous & Geneviève Laroche & Ève Durocher & David Rivest & Alain Olivier & Fabien Liagre & Alain Cogliastro, 2020. "Temperate Agroforestry Development: The Case of Québec and of France," Sustainability, MDPI, vol. 12(17), pages 1-23, September.
    7. Ureta, J. Carl & Motallebi, Marzieh & Vassalos, Michael & Seagle, Steven & Baldwin, Robert, 2022. "Estimating residents' WTP for ecosystem services improvement in a payments for ecosystem services (PES) program: A choice experiment approach," Ecological Economics, Elsevier, vol. 201(C).
    8. Heidenreich, Anja & Grovermann, Christian & Kadzere, Irene & Egyir, Irene S. & Muriuki, Anne & Bandanaa, Joseph & Clottey, Joseph & Ndungu, John & Blockeel, Johan & Muller, Adrian & Stolze, Matthias &, 2022. "Sustainable intensification pathways in Sub-Saharan Africa: Assessing eco-efficiency of smallholder perennial cash crop production," Agricultural Systems, Elsevier, vol. 195(C).
    9. repec:caa:jnlswr:v:preprint:id:16-2024-swr is not listed on IDEAS
    10. Ntawuruhunga, Donatien & Ngowi, Edwin Estomii & Mangi, Halima Omari & Salanga, Raymond John & Shikuku, Kelvin Mashisia, 2023. "Climate-smart agroforestry systems and practices: A systematic review of what works, what doesn't work, and why," Forest Policy and Economics, Elsevier, vol. 150(C).
    11. Vasiliev, Denis & Hazlett, Richard W., 2025. "Envisaging nature-based solutions as designed ecosystems in the changing world," Land Use Policy, Elsevier, vol. 150(C).
    12. Nóra Szigeti & Imre Berki & Andrea Vityi & Leonid Rasran, 2021. "Shelterbelts Planted on Cultivated Fields Are Not Solutions for the Recovery of Former Forest-Related Herbaceous Vegetation," Land, MDPI, vol. 10(9), pages 1-14, September.
    13. Saputra, Danny Dwi & Khasanah, Ni'matul & Sari, Rika Ratna & van Noordwijk, Meine, 2024. "Avoidance of tree-site mismatching of modelled cacao production systems across climatic zones: Roots for multifunctionality," Agricultural Systems, Elsevier, vol. 216(C).
    14. Magdalena Myszura-Dymek & Barbara Futa & Grażyna Żukowska & Klaudia Różowicz & Norbert Błoński, 2024. "The use of enzyme assays to assess soil biodiversity of diverse land use systems integrating trees - Preliminary research," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 19(2), pages 122-131.
    15. Tohiran, Kamil Azmi & Nobilly, Frisco & Zulkifli, Raja & Yahya, Muhammad Syafiq & Norhisham, Ahmad Razi & Rasyidi, Md Zainal & Azhar, Badrul, 2023. "Multi-species rotational grazing of small ruminants regenerates undergrowth vegetation while controlling weeds in the oil palm silvopastoral system," Agricultural Systems, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balzan, Mario V & Caruana, Julio & Zammit, Annrica, 2018. "Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state," Land Use Policy, Elsevier, vol. 75(C), pages 711-725.
    2. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    3. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    4. Lippert, Christian & Feuerbacher, Arndt & Narjes, Manuel, 2021. "Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations," Ecological Economics, Elsevier, vol. 180(C).
    5. Nicholas W Calderone, 2012. "Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-27, May.
    6. repec:idb:brikps:64718 is not listed on IDEAS
    7. Ioannis Arzoumanidis & Andrea Raggi & Luigia Petti, 2019. "Life Cycle Assessment of Honey: Considering the Pollination Service," Administrative Sciences, MDPI, vol. 9(1), pages 1-13, March.
    8. Centner, Terence J. & Brewer, Brady & Leal, Isaac, 2018. "Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species," Land Use Policy, Elsevier, vol. 75(C), pages 70-76.
    9. Margot Karlikow & Evan Amalfitano & Xiaolong Yang & Jennifer Doucet & Abigail Chapman & Peivand Sadat Mousavi & Paige Homme & Polina Sutyrina & Winston Chan & Sofia Lemak & Alexander F. Yakunin & Adam, 2023. "CRISPR-induced DNA reorganization for multiplexed nucleic acid detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Melathopoulos, Andony P. & Stoner, Alexander M., 2015. "Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms," Ecological Economics, Elsevier, vol. 117(C), pages 173-181.
    11. Laura Christ & Daniel C. Dreesmann, 2022. "SAD but True: Species Awareness Disparity in Bees Is a Result of Bee-Less Biology Lessons in Germany," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    12. Giannini, Tereza C. & Acosta, André L. & Garófalo, Carlos A. & Saraiva, Antonio M. & Alves-dos-Santos, Isabel & Imperatriz-Fonseca, Vera L., 2012. "Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil," Ecological Modelling, Elsevier, vol. 244(C), pages 127-131.
    13. Tremlett, Constance J. & Peh, Kelvin S.-H. & Zamora-Gutierrez, Veronica & Schaafsma, Marije, 2021. "Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico," Ecosystem Services, Elsevier, vol. 47(C).
    14. Halbich, Cestmir & Vostrovsky, Vaclav, . "Monitoring of infection pressure of American Foulbrood disease by means of Google Maps," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 4(4), pages 1-8.
    15. Vanessa Gabel & Robert Home & Sibylle Stöckli & Matthias Meier & Matthias Stolze & Ulrich Köpke, 2018. "Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    16. Thompson, Wyatt & Lu, Yaqiong & Gerlt, Scott & Yang, Xianyu & Campbell, J. Elliott & Kueppers, Lara M. & Snyder, Mark A., 2018. "Automatic Responses of Crop Stocks and Policies Buffer Climate Change Effects on Crop Markets and Price Volatility," Ecological Economics, Elsevier, vol. 152(C), pages 98-105.
    17. Vosti, Stephen A. & Witcover, Julie & Carpentier, Chantal Line, 2002. "Agricultural intensification by smallholders in the Western Brazilian Amazon: from deforestation to sustainable land use," Research reports 130, International Food Policy Research Institute (IFPRI).
    18. Letourneau, Deborah K. & Ando, Amy W. & Jedlicka, Julie A. & Narwani, Anita & Barbier, Edward, 2015. "Simple-but-sound methods for estimating the value of changes in biodiversity for biological pest control in agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 215-225.
    19. Costanza, Robert & Howarth, Richard B. & Kubiszewski, Ida & Liu, Shuang & Ma, Chunbo & Plumecocq, Gaël & Stern, David I., 2016. "Influential publications in ecological economics revisited," Ecological Economics, Elsevier, vol. 123(C), pages 68-76.
    20. Nuppenau, Ernst-August, "undated". "Linking Crop Rotation and Fertility Management by a Transition Matrix: Spatial and Dynamic Aspects in Programming of Ecosystem Service," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114600, European Association of Agricultural Economists.
    21. Francois Bareille & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2021. "Cooperative Management of Ecosystem Services: Coalition Formation, Landscape Structure and Policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 323-356, June.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2879-:d:232920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.