IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i10p85-d926925.html
   My bibliography  Save this article

Thermo-Economic Analysis of Integrated Hydrogen, Methanol and Dimethyl Ether Production Using Water Electrolyzed Hydrogen

Author

Listed:
  • Yusra Muazzam

    (Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan)

  • Muhammad Yousaf

    (Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan)

  • Muhammad Zaman

    (Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan)

  • Ali Elkamel

    (Chemical Engineering Department, University of Waterloo, Waterloo, ON N2L 3G1, Canada
    Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates)

  • Asif Mahmood

    (Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan)

  • Muhammad Rizwan

    (Department of Chemical Engineering, College of Engineering, University of Bahrain, Isa Town Campus, Isa Town P.O. Box 32038, Bahrain)

  • Muhammad Adnan

    (Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan)

Abstract

Carbon capture and utilization is an attractive technique to mitigate the damage to the environment. The aim of this study was to techno-economically investigate the hydrogenation of CO 2 to methanol and then conversion of methanol to dimethyl ether using Aspen Plus ® (V.11, Aspen Technology, Inc., Bedford, Massachusetts 01730, USA). Hydrogen was obtained from alkaline water electrolysis, proton exchange membrane and solid oxide electrolysis processes for methanol production. The major cost contributing factor in the methanol production was the cost of hydrogen production; therefore, the cost per ton of methanol was highest for alkaline water electrolysis and lowest for solid oxide electrolysis. The specific cost of methanol for solid oxide electrolysis, proton exchange membrane and alkaline water electrolysis was estimated to be 701 $/ton, 760 $/ton and 920 $/ton, respectively. Similarly, the specific cost of dimethyl ether was estimated to be 1141 $/ton, 1230 $/ton and 1471 $/ton, using solid oxide electrolysis, proton exchange membrane and alkaline water electrolysis based hydrogen production, respectively. The cost for methanol and dimethyl ether production by proton exchange membrane was slightly higher than for the solid oxide electrolysis process. However, the proton exchange membrane operates at a lower temperature, consequently leading to less operational issues.

Suggested Citation

  • Yusra Muazzam & Muhammad Yousaf & Muhammad Zaman & Ali Elkamel & Asif Mahmood & Muhammad Rizwan & Muhammad Adnan, 2022. "Thermo-Economic Analysis of Integrated Hydrogen, Methanol and Dimethyl Ether Production Using Water Electrolyzed Hydrogen," Resources, MDPI, vol. 11(10), pages 1-27, September.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:10:p:85-:d:926925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/10/85/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/10/85/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meunier, Nicolas & Chauvy, Remi & Mouhoubi, Seloua & Thomas, Diane & De Weireld, Guy, 2020. "Alternative production of methanol from industrial CO2," Renewable Energy, Elsevier, vol. 146(C), pages 1192-1203.
    2. Ogungbemi, Emmanuel & Ijaodola, Oluwatosin & Khatib, F.N. & Wilberforce, Tabbi & El Hassan, Zaki & Thompson, James & Ramadan, Mohamad & Olabi, A.G., 2019. "Fuel cell membranes – Pros and cons," Energy, Elsevier, vol. 172(C), pages 155-172.
    3. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    4. Siddig S. Khalafalla & Umer Zahid & Abdul Gani Abdul Jameel & Usama Ahmed & Feraih S. Alenazey & Chul-Jin Lee, 2020. "Conceptual Design Development of Coal-to-Methanol Process with Carbon Capture and Utilization," Energies, MDPI, vol. 13(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseinzadeh-Bandbafha, Homa & Tan, Yie Hua & Kansedo, Jibrail & Mubarak, N.M. & Liew, Rock Keey & Yek, Peter Nai Yuh & Aghbashlo, Mortaza & Ng, Hui Suan & Chong, William Woei Fong & Lam, Su Shiung & , 2023. "Assessing biodiesel production using palm kernel shell-derived sulfonated magnetic biochar from the life cycle assessment perspective," Energy, Elsevier, vol. 282(C).
    2. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    3. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    4. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    5. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    6. Seán Diffney & Laura Malaguzzi Valeri & Darragh Walsh, 2012. "Should Coal Replace Coal? Options for the Irish Electricity Market," The Economic and Social Review, Economic and Social Studies, vol. 43(4), pages 561-596.
    7. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    10. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    11. Marie Renner, 2014. "Carbon prices and CCS investment: comparative study between the European Union and China," Working Papers 1402, Chaire Economie du climat.
    12. Walsh, D.M. & O'Sullivan, K. & Lee, W.T. & Devine, M.T., 2014. "When to invest in carbon capture and storage technology: A mathematical model," Energy Economics, Elsevier, vol. 42(C), pages 219-225.
    13. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    14. Escudero, Marcos & Jiménez, Ángel & González, Celina & López, Ignacio, 2013. "Quantitative analysis of potential power production and environmental benefits of Biomass Integrated Gasification Combined Cycles in the European Union," Energy Policy, Elsevier, vol. 53(C), pages 63-75.
    15. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    16. Özge .Ic{s}legen & Stefan Reichelstein, 2011. "Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis," Management Science, INFORMS, vol. 57(1), pages 21-39, January.
    17. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    18. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    19. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    20. Dalia Patino-Echeverri & Dallas Burtraw & Karen Palmer, 2013. "Flexible mandates for investment in new technology," Journal of Regulatory Economics, Springer, vol. 44(2), pages 121-155, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:10:p:85-:d:926925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.