IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223021527.html
   My bibliography  Save this article

Assessing biodiesel production using palm kernel shell-derived sulfonated magnetic biochar from the life cycle assessment perspective

Author

Listed:
  • Hosseinzadeh-Bandbafha, Homa
  • Tan, Yie Hua
  • Kansedo, Jibrail
  • Mubarak, N.M.
  • Liew, Rock Keey
  • Yek, Peter Nai Yuh
  • Aghbashlo, Mortaza
  • Ng, Hui Suan
  • Chong, William Woei Fong
  • Lam, Su Shiung
  • Verma, Meenakshi
  • Peng, Wanxi
  • Tabatabaei, Meisam

Abstract

Climate change awareness has encouraged further research towards non-fossil production and consumption. Among non-fossils, biodiesel is one of the attractive alternatives to petroleum diesel. Despite the favorable properties of biodiesel, it is still faced with serious challenges regarding feedstock and catalyst used. In line with that, using waste-oriented oils and catalysts is a promising approach to ensure sustainable biodiesel production. Nevertheless, the environmental sustainability of such platforms must be carefully assessed before commercialization. The current study assesses the environmental sustainability of biodiesel production using palm kernel shell-derived sulfonated magnetic biochar through the life cycle assessment approach. Based on the results, biodiesel synthesis from waste cooking oil by palm kernel shell-derived sulfonated magnetic biochar causes 5.86E-04 DALY, 1.29E-06 species.yr, and 9.52E+01 USD2013 per tonne of biodiesel damage to human health, ecosystems, and resources categories. Transesterification and purification steps are responsible for approximately 76%, 76%, and 90% of these damages, respectively. Based on the weighted results, the total environmental impact of waste cooking oil biodiesel produced by palm kernel shell-derived sulfonated magnetic biochar stands at 1.08E+01 Pt per tonne of biodiesel, with the damage to human health category being more pronounced than the other damage categories. Generally, substituting palm oil biodiesel and diesel with waste cooking oil biodiesel produced by the developed catalyst could lead to an 89% and 55% decrease in total weighted impacts. Overall, the catalyst developed in this study could be a favorable alternative to homogeneous catalysts used in biodiesel production, causing much discounted environmental burdens.

Suggested Citation

  • Hosseinzadeh-Bandbafha, Homa & Tan, Yie Hua & Kansedo, Jibrail & Mubarak, N.M. & Liew, Rock Keey & Yek, Peter Nai Yuh & Aghbashlo, Mortaza & Ng, Hui Suan & Chong, William Woei Fong & Lam, Su Shiung & , 2023. "Assessing biodiesel production using palm kernel shell-derived sulfonated magnetic biochar from the life cycle assessment perspective," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021527
    DOI: 10.1016/j.energy.2023.128758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meunier, Nicolas & Chauvy, Remi & Mouhoubi, Seloua & Thomas, Diane & De Weireld, Guy, 2020. "Alternative production of methanol from industrial CO2," Renewable Energy, Elsevier, vol. 146(C), pages 1192-1203.
    2. Peñarrubia Fernandez, Igor Alberto & Liu, De-Hua & Zhao, Jinsong, 2017. "LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 117-127.
    3. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    5. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    6. Dejair de Pontes Souza & Fabrício Molica Mendonça & Kátia Regina Alves Nunes & Rogerio Valle, 2012. "Environmental and Socioeconomic Analysis of Producing Biodiesel from Used Cooking Oil in Rio de Janeiro," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 655-664, August.
    7. Uzun, Başak Burcu & Kılıç, Murat & Özbay, Nurgül & Pütün, Ayşe E. & Pütün, Ersan, 2012. "Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties," Energy, Elsevier, vol. 44(1), pages 347-351.
    8. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Siddig S. Khalafalla & Umer Zahid & Abdul Gani Abdul Jameel & Usama Ahmed & Feraih S. Alenazey & Chul-Jin Lee, 2020. "Conceptual Design Development of Coal-to-Methanol Process with Carbon Capture and Utilization," Energies, MDPI, vol. 13(23), pages 1-21, December.
    10. Foteinis, Spyros & Chatzisymeon, Efthalia & Litinas, Alexandros & Tsoutsos, Theocharis, 2020. "Used-cooking-oil biodiesel: Life cycle assessment and comparison with first- and third-generation biofuel," Renewable Energy, Elsevier, vol. 153(C), pages 588-600.
    11. Gad, M.S. & Abu-Elyazeed, O.S. & Mohamed, M.A. & Hashim, A.M., 2021. "Effect of oil blends derived from catalytic pyrolysis of waste cooking oil on diesel engine performance, emissions and combustion characteristics," Energy, Elsevier, vol. 223(C).
    12. Tang, Zo-Ee & Lim, Steven & Pang, Yean-Ling & Ong, Hwai-Chyuan & Lee, Keat-Teong, 2018. "Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 235-253.
    13. Talens Peiró, L. & Lombardi, L. & Villalba Méndez, G. & Gabarrell i Durany, X., 2010. "Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)," Energy, Elsevier, vol. 35(2), pages 889-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Caldeira, Carla & Queirós, João & Noshadravan, Arash & Freire, Fausto, 2016. "Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 83-92.
    3. Aghbashlo, Mortaza & Tabatabaei, Meisam & Amid, Sama & Hosseinzadeh-Bandbafha, Homa & Khoshnevisan, Benyamin & Kianian, Ghaem, 2020. "Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 1352-1364.
    4. Galusnyak, Stefan Cristian & Petrescu, Letitia & Cormos, Calin-Cristian, 2022. "Classical vs. reactive distillation technologies for biodiesel production: An environmental comparison using LCA methodology," Renewable Energy, Elsevier, vol. 192(C), pages 289-299.
    5. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    6. Maranduba, Henrique Leonardo & Robra, Sabine & Nascimento, Iracema Andrade & da Cruz, Rosenira Serpa & Rodrigues, Luciano Brito & Almeida Neto, José Adolfo de, 2016. "Improving the energy balance of microalgae biodiesel: Synergy with an autonomous sugarcane ethanol distillery," Energy, Elsevier, vol. 115(P1), pages 888-895.
    7. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    8. Yusra Muazzam & Muhammad Yousaf & Muhammad Zaman & Ali Elkamel & Asif Mahmood & Muhammad Rizwan & Muhammad Adnan, 2022. "Thermo-Economic Analysis of Integrated Hydrogen, Methanol and Dimethyl Ether Production Using Water Electrolyzed Hydrogen," Resources, MDPI, vol. 11(10), pages 1-27, September.
    9. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    10. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    11. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    12. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    13. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    14. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    15. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    16. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    17. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    18. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    19. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.