IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i5p727-d813813.html
   My bibliography  Save this article

Verifying the Synthesized Effects of Intensive Urban Land Use on Quality of Life, Ecology, and Urban-Land-Use Scale in China

Author

Listed:
  • Bingqing Li

    (School of Public Administration, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, China)

  • Zhanqi Wang

    (School of Public Administration, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, China)

  • Ji Chai

    (School of Public Administration, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, China)

Abstract

Intensive urban land use has been proposed as a method to promote sustainable development in the context of rapid urban sprawl. However, a consensus has not been reached on whether this approach is beneficial for ecology and compatible with suitable living conditions. Exploring this issue in China will help promote high-quality development. Extant research has mainly explored the effects of intensive urban land use on quality of life, ecology, and urban-land-use scale separately, while a synthesized analysis in this regard is lacking. In the light of this, we establish an analysis framework by which to verify the effects of intensive urban land use on the three aspects, using data from China spanning 2005–2019, subjected to structural equation modeling. The results show that intensive urban land use has varying degrees of positive effects on quality of life, ecology, and urban-land-use scale. It had no strong effect on the three items initially, while quality of life was significantly optimized by 2010, and ecology was markedly improved from 2015. However, there was a trend toward shrinking living space and sprawling urban areas. The corresponding suggestions are formulated for policy makers to improve intensive urban-land-use policy.

Suggested Citation

  • Bingqing Li & Zhanqi Wang & Ji Chai, 2022. "Verifying the Synthesized Effects of Intensive Urban Land Use on Quality of Life, Ecology, and Urban-Land-Use Scale in China," Land, MDPI, vol. 11(5), pages 1-18, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:727-:d:813813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/5/727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/5/727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    2. Hubacek, Klaus & Giljum, Stefan, 2003. "Applying physical input-output analysis to estimate land appropriation (ecological footprints) of international trade activities," Ecological Economics, Elsevier, vol. 44(1), pages 137-151, February.
    3. Santos-Martín, F. & Zorrilla-Miras, P. & Palomo, I. & Montes, C. & Benayas, J. & Maes, J., 2019. "Protecting nature is necessary but not sufficient for conserving ecosystem services: A comprehensive assessment along a gradient of land-use intensity in Spain," Ecosystem Services, Elsevier, vol. 35(C), pages 43-51.
    4. Lei Li & Chenzi Pan & Shuai Ling & Mingqi Li, 2022. "Ecological Efficiency of Urban Industrial Land in Metropolitan Areas: Evidence from China," Land, MDPI, vol. 11(1), pages 1-19, January.
    5. Song, Xin-Yuan & Chen, Fei & Lu, Zhao-Hua, 2013. "A Bayesian semiparametric dynamic two-level structural equation model for analyzing non-normal longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 87-108.
    6. Song, Yang & Yeung, Godfrey & Zhu, Daolin & Xu, Yang & Zhang, Lixin, 2022. "Efficiency of urban land use in China’s resource-based cities, 2000–2018," Land Use Policy, Elsevier, vol. 115(C).
    7. Ruimin Yin & Zhanqi Wang & Ji Chai & Yunxiao Gao & Feng Xu, 2022. "The Evolution and Response of Space Utilization Efficiency and Carbon Emissions: A Comparative Analysis of Spaces and Regions," Land, MDPI, vol. 11(3), pages 1-21, March.
    8. Jun Yang & Gui Jin & Xianjin Huang & Kun Chen & Hao Meng, 2018. "How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    9. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    10. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    11. Carl Gaigné & Stéphane Riou & Jacques-François Thisse, 2012. "Are Compact Cities Environmentally (and Socially) Desirable ?," Cahiers de recherche CREATE 2012-4, CREATE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanchao Kong & Kaixiao Zhang & Hengshu Fu & Lina Cui & Yang Li & Tengteng Wang, 2023. "Temporal–Spatial Variations and Convergence Analysis of Land Use Eco-Efficiency in the Urban Agglomerations of the Yellow River Basin in China," Sustainability, MDPI, vol. 15(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaishuai Han & Bindong Sun, 2019. "Impact of Population Density on PM 2.5 Concentrations: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    2. Legras, Sophie, 2015. "Correlated environmental impacts of wastewater management in a spatial context," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 83-92.
    3. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    4. Stéphane De Cara & Anne Fournier & Carl Gaigné, 2011. "Feeding the cities and greenhouse gas emissions: a new economic geography approach," Working Papers 1109, Chaire Economie du climat.
    5. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    6. Carl Gaigné & Jacques-François Thisse, 2013. "New Economic Geography and the City," Working Papers SMART 13-02, INRAE UMR SMART.
    7. Idt, Joel & Pellegrino, Margot, 2021. "From the ostensible objectives of public policies to the reality of changes: Local orders of densification in the urban regions of Paris and Rome," Land Use Policy, Elsevier, vol. 107(C).
    8. Schindler, Mirjam & Caruso, Geoffrey & Picard, Pierre, 2017. "Equilibrium and first-best city with endogenous exposure to local air pollution from traffic," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 12-23.
    9. Yao Li & Shuai Wang, 2023. "Personal emission permit trading scheme: urban spatial equilibrium and planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1239-1259, March.
    10. Theodore Tsekeris, 2022. "Freight Transport Cost and Urban Sprawl across EU Regions," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    11. Cárdenas Rodríguez, Miguel & Dupont-Courtade, Laura & Oueslati, Walid, 2016. "Air pollution and urban structure linkages: Evidence from European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1-9.
    12. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    13. Qian Zhang & Huaxing Zhang & Dan Zhao & Baodong Cheng & Chang Yu & Yanli Yang, 2019. "Does Urban Sprawl Inhibit Urban Eco-Efficiency? Empirical Studies of Super-Efficiency and Threshold Regression Models," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    14. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    15. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    16. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    17. Shoufu Yang & Hanhui Zhao & Yiming Chen & Zitian Fu & Chaohao Sun & Tsangyao Chang, 2023. "The Impact of Digital Enterprise Agglomeration on Carbon Intensity: A Study Based on the Extended Spatial STIRPAT Model," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    18. Lewandowska Aleksandra & Piasecki Adam, 2019. "Selected aspects of water and sewage management in Poland in the context of sustainable urban development," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 45(45), pages 149-157, September.
    19. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    20. Simic, Vladimir & Gokasar, Ilgin & Deveci, Muhammet & Karakurt, Ahmet, 2022. "An integrated CRITIC and MABAC based type-2 neutrosophic model for public transportation pricing system selection," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:727-:d:813813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.