IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i9p494-d1742074.html
   My bibliography  Save this article

Forecasting Financial Volatility Under Structural Breaks: A Comparative Study of GARCH Models and Deep Learning Techniques

Author

Listed:
  • Víctor Chung

    (Departamento de Estadística, Universidad Nacional Pedro Ruiz Gallo, Chiclayo 14001, Peru)

  • Jenny Espinoza

    (Departamento de Ciencia, Universidad Tecnológica del Perú, Chiclayo 14001, Peru)

  • Renán Quispe

    (Departamento de Incorporación de Nuevos Saberes, Universidad Nacional de Ingeniería, Lima 150101, Peru)

Abstract

The main objective of this study is to evaluate the predictive performance of traditional econometric models and deep learning techniques in forecasting financial volatility under structural breaks. Using daily data from four Latin American stock market indices between 2000 and 2024, we compare GARCH models with neural networks such as LSTM and CNN. Structural breaks are identified through a modified ICSS algorithm and incorporated into the GARCH framework via regime segmentation. The results show that neglecting breaks overstates volatility persistence and weakens predictive accuracy, while accounting for them improves GARCH forecasts only in specific cases. By contrast, deep learning models consistently outperform GARCH alternatives at medium- and long-term horizons, capturing nonlinear and time-varying dynamics more effectively. This study contributes to the literature by bridging econometric and deep learning approaches and offers practical insights for policymakers and investors in emerging markets facing recurrent structural instability.

Suggested Citation

  • Víctor Chung & Jenny Espinoza & Renán Quispe, 2025. "Forecasting Financial Volatility Under Structural Breaks: A Comparative Study of GARCH Models and Deep Learning Techniques," JRFM, MDPI, vol. 18(9), pages 1-21, September.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:494-:d:1742074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/9/494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/9/494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. ., 2024. "What economists do: (2) contributions in “normal science”," Chapters, in: Theories and Models in Economics, chapter 4, pages 41-60, Edward Elgar Publishing.
    4. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    5. ., 2024. "What economists do: (1) path-breaking contributions," Chapters, in: Theories and Models in Economics, chapter 3, pages 24-40, Edward Elgar Publishing.
    6. Davide De Gaetano, 2018. "Forecast Combinations for Structural Breaks in Volatility: Evidence from BRICS Countries," JRFM, MDPI, vol. 11(4), pages 1-13, October.
    7. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    8. Gustavo Di-Giorgi & Rodrigo Salas & Rodrigo Avaria & Cristian Ubal & Harvey Rosas & Romina Torres, 2025. "Volatility forecasting using deep recurrent neural networks as GARCH models," Computational Statistics, Springer, vol. 40(6), pages 3229-3255, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    2. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2025. "Testing parametric additive time-varying GARCH models," Papers 2506.23821, arXiv.org.
    3. Funke, Michael & Shu, Chang & Cheng, Xiaoqiang & Eraslan, Sercan, 2015. "Assessing the CNH–CNY pricing differential: Role of fundamentals, contagion and policy," Journal of International Money and Finance, Elsevier, vol. 59(C), pages 245-262.
    4. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    5. Roberto Ferulano, 2009. "A Mixed Historical Formula to forecast volatility," Journal of Asset Management, Palgrave Macmillan, vol. 10(2), pages 124-136, June.
    6. repec:wyi:journl:002190 is not listed on IDEAS
    7. Terence Tai Leung Chong & Chenxi Lu & Wing Hong Chan, 2020. "Long Range Dependence And Structural Breaks In The Gold Markets," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 65(02), pages 257-273, March.
    8. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
    9. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    10. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    11. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    12. Andreï Kostyrka & Dmitry Malakhov, 2021. "Was there ever a shift: Empirical analysis of structural-shift tests for return volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 110-139.
    13. Rohan, Neelabh, 2013. "A time varying GARCH(p,q) model and related statistical inference," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1983-1990.
    14. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    15. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2024. "A new GARCH model with a deterministic time-varying intercept," Papers 2410.03239, arXiv.org, revised Oct 2024.
    16. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    17. Caroline Michere Ndei & Stephen Muchina & Kennedy Waweru, 2019. "Modeling stock market return volatility in the presence of structural breaks: Evidence from Nairobi Securities Exchange, Kenya," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(5), pages 156-171, September.
    18. Luc, BAUWENS & Arie, PREMINGER & Jeroen, ROMBOUTS, 2006. "Regime switching GARCH models," Discussion Papers (ECON - Département des Sciences Economiques) 2006006, Université catholique de Louvain, Département des Sciences Economiques.
    19. Rombouts Jeroen V. K. & Bouaddi Mohammed, 2009. "Mixed Exponential Power Asymmetric Conditional Heteroskedasticity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-32, May.
    20. Polzehl, Jörg & Spokoiny, Vladimir, 2006. "Varying coefficient GARCH versus local constant volatility modeling: Comparison of the predictive power," SFB 649 Discussion Papers 2006-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. Arago-Manzana, Vicent & Fernandez-Izquierdo, Maria Angeles, 2007. "Influence of structural changes in transmission of information between stock markets: A European empirical study," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 112-124, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:494-:d:1742074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.