IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i5p727-d209810.html
   My bibliography  Save this article

Are Small Cities More Environmentally Friendly? An Empirical Study from China

Author

Listed:
  • Shuai Liu

    (Institute of Central China Development, Wuhan University, Wuhan 430072, China
    Division of Economics, School of Social Sciences, Nanyang Technological University, Singapore 637332, Singapore)

  • Fei Fan

    (Institute of Central China Development, Wuhan University, Wuhan 430072, China
    School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4072, Australia)

  • Jianqing Zhang

    (Institute of Central China Development, Wuhan University, Wuhan 430072, China
    School of Economics and Management, Wuhan University, Wuhan 430072, China)

Abstract

City sizes are rapidly expanding, and urban air pollution is a serious challenge in China. PM 2.5 (fine particulate matter) is the primary pollutant of urban pollution. This study aimed to examine the correlations between PM 2.5 and city size. In this paper, using the panel data of 278 cities in China from 2007 to 2016, we constructed a static and dynamic panel model based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) analytical framework. We found that there was a significantly inverted N-shaped correlation between PM 2.5 and city size. Two inflection points were found at 949,200 and 3,736,100. We found no evidence to support the EKC (Environmental Kuznets Curve) hypothesis, while the “Pollution Haven Hypothesis” gained support. The contradiction between PM 2.5 and city size will exist for the long term. Policy recommendations were proposed based on our findings. Controlling the city size does not seem to be necessary for very large cities as they have passed the second inflection point. Cities with a growing population are under great pressure to prevent PM 2.5 pollution and need to implement greater measures to reduce pollution.

Suggested Citation

  • Shuai Liu & Fei Fan & Jianqing Zhang, 2019. "Are Small Cities More Environmentally Friendly? An Empirical Study from China," IJERPH, MDPI, vol. 16(5), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:727-:d:209810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/5/727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/5/727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    2. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Ali Jabran, Muhammad, 2016. "How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 83-93.
    3. Lijian Han & Weiqi Zhou & Weifeng Li, 2018. "Growing Urbanization and the Impact on Fine Particulate Matter (PM 2.5 ) Dynamics," Sustainability, MDPI, vol. 10(6), pages 1-9, May.
    4. Chai, Jian & Liang, Ting & Lai, Kin Keung & Zhang, Zhe George & Wang, Shouyang, 2018. "The future natural gas consumption in China: Based on the LMDI-STIRPAT-PLSR framework and scenario analysis," Energy Policy, Elsevier, vol. 119(C), pages 215-225.
    5. Hua, Yue & Xie, Rui & Su, Yaqin, 2018. "Fiscal spending and air pollution in Chinese cities: Identifying composition and technique effects," China Economic Review, Elsevier, vol. 47(C), pages 156-169.
    6. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    7. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    8. Ahmad, Najid & Du, Liangsheng & Lu, Jiye & Wang, Jianlin & Li, Hong-Zhou & Hashmi, Muhammad Zaffar, 2017. "Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve?," Energy, Elsevier, vol. 123(C), pages 164-172.
    9. Halkos, George E. & Paizanos, Epameinondas Α., 2016. "The effects of fiscal policy on CO2 emissions: Evidence from the U.S.A," Energy Policy, Elsevier, vol. 88(C), pages 317-328.
    10. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
    11. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    12. Lantz, V. & Feng, Q., 2006. "Assessing income, population, and technology impacts on CO2 emissions in Canada: Where's the EKC?," Ecological Economics, Elsevier, vol. 57(2), pages 229-238, May.
    13. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    14. Li, Tingting & Wang, Yong & Zhao, Dingtao, 2016. "Environmental Kuznets Curve in China: New evidence from dynamic panel analysis," Energy Policy, Elsevier, vol. 91(C), pages 138-147.
    15. Wang, Yuan & Han, Rong & Kubota, Jumpei, 2016. "Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1182-1188.
    16. Roberto Camagni & Roberta Capello & Andrea Caragliu, 2013. "One or infinite optimal city sizes? In search of an equilibrium size for cities," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 51(2), pages 309-341, October.
    17. Shukla, V. & Parikh, K., 1992. "The Environmental Consequences of Urban Concentration: Cross-National Perspectives on Economic Development, Air Pollution and City Size," Papers 72, Indira Gandhi Institute of Development Research-.
    18. Yu, Xiaoman & Geng, Yong & Dong, Huijuan & Ulgiati, Sergio & Liu, Zhe & Liu, Zuoxi & Ma, Zhixiao & Tian, Xu & Sun, Lu, 2016. "Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)," Energy, Elsevier, vol. 107(C), pages 818-830.
    19. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lili Yang & Ning Ma, 2022. "Empirical Study on the Influence of Urban Environmental Industrial Structure Optimization on Ecological Landscape Greening Construction," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    2. Liang Zhao & Lifei Xu & Ling Li & Jing Hu & Lin Mu, 2022. "Can Inbound Tourism Improve Regional Ecological Efficiency? An Empirical Analysis from China," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    3. Fei Fan & Dailin Cao & Ning Ma, 2020. "Is Improvement of Innovation Efficiency Conducive to Haze Governance? Empirical Evidence from 283 Chinese Cities," IJERPH, MDPI, vol. 17(17), pages 1-20, August.
    4. Jie Fan & Zhuo Shen & Zhengwen Wang, 2022. "The Threshold Effect of Urban Levels on Environmental Collaborative Governance: An Empirical Analysis from Chinese Cities," IJERPH, MDPI, vol. 19(7), pages 1-11, March.
    5. Haiqian Ke & Wenyi Yang & Xiaoyang Liu & Fei Fan, 2020. "Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    6. Jianqing Zhang & Haichao Yu & Keke Zhang & Liang Zhao & Fei Fan, 2021. "Can Innovation Agglomeration Reduce Carbon Emissions? Evidence from China," IJERPH, MDPI, vol. 18(2), pages 1-24, January.
    7. Zuoming Liu & Changbo Qiu & Min Sun & Dongmin Zhang, 2022. "Environmental Performance Evaluation of Key Polluting Industries in China—Taking the Power Industry as an Example," IJERPH, MDPI, vol. 19(12), pages 1-21, June.
    8. Liang Zhao & Liangyu Chen, 2022. "Research on the Impact of Government Environmental Information Disclosure on Green Total Factor Productivity: Empirical Experience from Chinese Province," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    9. Yunling Ye & Sheng Ye & Haichao Yu, 2021. "Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    10. Jing Ma & Dan Liu & Zhengwen Wang, 2023. "Sponge City Construction and Urban Economic Sustainable Development: An Ecological Philosophical Perspective," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    11. Haiqian Ke & Bo Yang & Shangze Dai, 2022. "Does Intensive Land Use Contribute to Energy Efficiency?—Evidence Based on a Spatial Durbin Model," IJERPH, MDPI, vol. 19(9), pages 1-17, April.
    12. Qianrui Hwang & Min Yao & Shugang Li & Fang Wang & Zhenmin Luo & Zheng Li & Tongshuang Liu, 2023. "Risk Spillovers between China’s Carbon and Energy Markets," Energies, MDPI, vol. 16(19), pages 1-17, September.
    13. Jianwei Zhang & Heng Li & Guoxin Jiao & Jiayi Wang & Jingjing Li & Mengzhen Li & Haining Jiang, 2022. "Spatial Pattern of Technological Innovation in the Yangtze River Delta Region and Its Impact on Water Pollution," IJERPH, MDPI, vol. 19(12), pages 1-20, June.
    14. Min Qian & Zhenpeng Cheng & Zhengwen Wang & Dingyi Qi, 2022. "What Affects Rural Ecological Environment Governance Efficiency? Evidence from China," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
    15. Wenyi Yang & Xueli Wang & Keke Zhang & Zikan Ke, 2020. "COVID-19, Urbanization Pattern and Economic Recovery: An Analysis of Hubei, China," IJERPH, MDPI, vol. 17(24), pages 1-21, December.
    16. Juan Hu & Chengjin Ma & Chen Li, 2022. "Can Green Innovation Improve Regional Environmental Carrying Capacity? An Empirical Analysis from China," IJERPH, MDPI, vol. 19(20), pages 1-15, October.
    17. Chen Li & Heng Li & Xionghe Qin, 2022. "Spatial Heterogeneity of Carbon Emissions and Its Influencing Factors in China: Evidence from 286 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(3), pages 1-29, January.
    18. Ning Ma & Puyu Liu & Yadong Xiao & Hengyun Tang & Jianqing Zhang, 2022. "Can Green Technological Innovation Reduce Hazardous Air Pollutants?—An Empirical Test Based on 283 Cities in China," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    19. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    2. Ameer, Ayesha & Munir, Kashif, 2016. "Effect of Economic Growth, Trade Openness, Urbanization, and Technology on Environment of Selected Asian Countries," MPRA Paper 74571, University Library of Munich, Germany.
    3. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    4. Xing, Licong & Khan, Yousaf Ali & Arshed, Noman & Iqbal, Mubasher, 2023. "Investigating the impact of economic growth on environment degradation in developing economies through STIRPAT model approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Ronald R. Kumar & Peter J. Stauvermann, 2019. "The Effects of a Revenue-Neutral Child Subsidy Tax Mechanism on Growth and GHG Emissions," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    6. Wenyan Wang & Juan Wang & Fang Guo, 2018. "Carbon Dioxide (CO 2 ) Emission Reduction Potential in East and South Coastal China: Scenario Analysis Based on STIRPAT," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    7. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    8. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    9. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    10. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    11. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    12. Faisal Faisal & Ruqiya Pervaiz & Nesrin Ozatac & Turgut Tursoy, 2021. "Exploring the relationship between carbon dioxide emissions, urbanisation and financial deepening for Turkey using the symmetric and asymmetric causality approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17374-17402, December.
    13. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    14. Effiong, Ekpeno, 2016. "Urbanization and Environmental Quality in Africa," MPRA Paper 73224, University Library of Munich, Germany.
    15. Awan, Ashar & Abbasi, Kashif Raza & Rej, Soumen & Bandyopadhyay, Arunava & Lv, Kangjuan, 2022. "The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis," Renewable Energy, Elsevier, vol. 189(C), pages 454-466.
    16. Ekpeno L. Effiong, 2018. "On the urbanization-pollution nexus in Africa: a semiparametric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 445-456, January.
    17. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    18. Niu, Honglei & Lekse, William, 2018. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-31.
    19. Axel Franzen & Sebastian Mader, 2016. "Predictors of national CO2 emissions: do international commitments matter?," Climatic Change, Springer, vol. 139(3), pages 491-502, December.
    20. Rafiq, Shuddhasattwa & Nielsen, Ingrid & Smyth, Russell, 2017. "Effect of internal migration on the environment in China," Energy Economics, Elsevier, vol. 64(C), pages 31-44.

    More about this item

    Keywords

    PM 2.5 ; city size; STIRPAT; China;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:727-:d:209810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.