IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p403-d70785.html
   My bibliography  Save this article

Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines

Author

Listed:
  • Md Mofijur Rahman

    (School of Engineering and Technology, Central Queensland University, North Rockhampton, Queensland 4702, Australia)

  • Mohammad Rasul

    (School of Engineering and Technology, Central Queensland University, North Rockhampton, Queensland 4702, Australia)

  • Nur Md Sayeed Hassan

    (School of Engineering and Technology, Central Queensland University, North Rockhampton, Queensland 4702, Australia)

  • Justin Hyde

    (School of Engineering and Technology, Central Queensland University, North Rockhampton, Queensland 4702, Australia)

Abstract

This paper investigated the prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engine. The biodiesel was produced using conventional transesterification process using the base catalyst (KOH). A multi-cylinder diesel engine was used to evaluate the performance and emission of 5% (B5) and 20% (B20) macadamia biodiesel fuel at different engine speeds and full load condition. It was found that the characteristics of biodiesel are within the limit of specified standards American Society for Testing and Materials (ASTM D6751) and comparable to diesel fuel. This study also found that the blending of macadamia biodiesel–diesel fuel significantly improves the fuel properties including viscosity, density ( D ), heating value and oxidation stability ( OS ). Engine performance results indicated that macadamia biodiesel fuel sample reduces brake power (BP) and increases brake-specific fuel consumption (BSFC) while emission results indicated that it reduces the average carbon monoxide (CO), hydrocarbons (HC) and particulate matter (PM) emissions except nitrogen oxides (NO x ) than diesel fuel. Finally, it can be concluded that macadamia oil can be a possible source for biodiesel production and up to 20% macadamia biodiesel can be used as a fuel in diesel engines without modifications.

Suggested Citation

  • Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:403-:d:70785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
    2. Jun Cong Ge & Min Soo Kim & Sam Ki Yoon & Nag Jung Choi, 2015. "Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend," Energies, MDPI, vol. 8(7), pages 1-14, July.
    3. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    4. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk, 2012. "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends," Energy, Elsevier, vol. 37(1), pages 616-622.
    5. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    6. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Abedin, M.J. & Sanjid, A. & Rahman, Md. Mofijur, 2014. "Assessing idling effects on a compression ignition engine fueled with Jatropha and Palm biodiesel blends," Renewable Energy, Elsevier, vol. 68(C), pages 644-650.
    7. Belachew Tesfa & Fengshou Gu & Rakesh Mishra & Andrew Ball, 2014. "Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks," Energies, MDPI, vol. 7(1), pages 1-17, January.
    8. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    9. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    10. Sam Ki Yoon & Min Soo Kim & Han Joo Kim & Nag Jung Choi, 2014. "Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine," Energies, MDPI, vol. 7(12), pages 1-18, December.
    11. Muhammad Aminul Islam & Marie Magnusson & Richard J. Brown & Godwin A. Ayoko & Md. Nurun Nabi & Kirsten Heimann, 2013. "Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles," Energies, MDPI, vol. 6(11), pages 1-27, October.
    12. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    13. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    14. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    15. Bari, S., 2014. "Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel," Applied Energy, Elsevier, vol. 124(C), pages 35-43.
    16. Lim, Steven & Teong, Lee Keat, 2010. "Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 938-954, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    2. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.
    3. Muhammad Nobi Hossain & Md Sufi Ullah Siddik Bhuyan & Abul Hasnat Md Ashraful Alam & Yong Chan Seo, 2018. "Biodiesel from Hydrolyzed Waste Cooking Oil Using a S-ZrO 2 /SBA-15 Super Acid Catalyst under Sub-Critical Conditions," Energies, MDPI, vol. 11(2), pages 1-13, January.
    4. Md Sufi Ullah Siddik Bhuyan & Abul Hasnat Md Ashraful Alam & Younghwan Chu & Yong Chan Seo, 2017. "Biodiesel Production Potential from Littered Edible Oil Fraction Using Directly Synthesized S-TiO 2 /MCM-41 Catalyst in Esterification Process via Non-Catalytic Subcritical Hydrolysis," Energies, MDPI, vol. 10(9), pages 1-17, August.
    5. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    6. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan, 2017. "Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel," Energies, MDPI, vol. 10(1), pages 1-16, January.
    7. Nabi, M.N. & Rasul, M.G. & Anwar, M. & Mullins, B.J., 2019. "Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels," Renewable Energy, Elsevier, vol. 140(C), pages 647-657.
    8. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    9. Krzysztof Biernat & Piotr Bocian & Paweł Bukrejewski & Krzysztof R. Noworyta, 2019. "Application of the Impedance Spectroscopy as a New Tool for Studying Biodiesel Fuel Aging Processes," Energies, MDPI, vol. 12(4), pages 1-12, February.
    10. Sharzali Che Mat & Mohamad Yusof Idroas & Yew Heng Teoh & Mohd Fadzli Hamid, 2018. "Physicochemical, Performance, Combustion and Emission Characteristics of Melaleuca Cajuputi Oil-Refined Palm Oil Hybrid Biofuel Blend," Energies, MDPI, vol. 11(11), pages 1-20, November.
    11. M. Mukhtar N. A. & Abd Rashid Abd Aziz & Ftwi Y. Hagos & M. M. Noor & Kumaran Kadirgama & Rizalman Mamat & A. Adam Abdullah, 2019. "The Influence of Formulation Ratio and Emulsifying Settings on Tri-Fuel (Diesel–Ethanol–Biodiesel) Emulsion Properties," Energies, MDPI, vol. 12(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Armando Pérez & David Mateos & Conrado García & Camilo Caraveo & Gisela Montero & Marcos Coronado & Benjamín Valdez, 2020. "Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel," Energies, MDPI, vol. 13(14), pages 1-14, July.
    4. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    5. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    7. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    8. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    9. Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
    10. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    11. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    12. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    13. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    14. Alexander García-Mariaca & Jorge Villalba & Uriel Carreño & Didier Aldana, 2023. "Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas," Energies, MDPI, vol. 16(16), pages 1-16, August.
    15. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    16. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    17. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    18. Zhiyue Mu & Jianqin Fu & Feng Zhou & Kainan Yuan & Juan Yu & Dan Huang & Zhuangping Cui & Xiongbo Duan & Jingping Liu, 2023. "A Comparatively Experimental Study on the Performance and Emission Characteristics of a Diesel Engine Fueled with Tung Oil-Based Biodiesel Blends (B10, B20, B50)," Energies, MDPI, vol. 16(14), pages 1-15, July.
    19. Eryilmaz, Tanzer & Yesilyurt, Murat Kadir, 2016. "Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel," Renewable Energy, Elsevier, vol. 95(C), pages 233-247.
    20. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:403-:d:70785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.