IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p738-d208438.html
   My bibliography  Save this article

Application of the Impedance Spectroscopy as a New Tool for Studying Biodiesel Fuel Aging Processes

Author

Listed:
  • Krzysztof Biernat

    (Automotive Industry Institute, Jagiellońska 55, 03-301 Warsaw, Poland)

  • Piotr Bocian

    (Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland)

  • Paweł Bukrejewski

    (Automotive Industry Institute, Jagiellońska 55, 03-301 Warsaw, Poland)

  • Krzysztof R. Noworyta

    (Department of Physical Chemistry of Supramolecular Complexes, Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland)

Abstract

Fatty acid methyl esters (FAME), which are presently the main component of biodiesel fuels, undergo relatively fast oxidation processes. This behavior prevents long term storage of this fuel. From laboratory practices, it transpires that even after a very short period of storage, the oxidative stability of the biodiesel exceeds the values required by European regulations. Therefore, the goal of this work was to devise a parameter (marker) allowing for fast and convenient identification of the chemical stability of biodiesel. Moreover, we were aiming to devise a marker which can also be used for the evaluation of the chemical stability of other hydrocarbon fuels containing biocomponents. To this end, in the presented study, selected biodiesel samples were subjected to controlled aging processes in laboratory conditions at 95 °C and oxygen flow according to the norm. Then, physico-chemical parameters were selected that are critical from the point of view of the fuel practical application. Those included density, refractive index, oxidative stability and resistance to oxidation. The appropriate physico-chemical properties were measured before and after an aging process conducted for various times. Simultaneously, electrochemical impedance spectroscopy (EIS) studies were performed for all the studied samples yielding the electrical parameters of the sample, including resistance, relaxation time and capacitance. Subsequently, a correlation between the results of the EIS studies and the selected critical parameters has been established. The obtained results indicate that the resistance, relaxation time and capacitance of the studied biodiesel fuel increase with aging time. This indicates the formation of long chain compounds with increased polarity. Interestingly, the electrical parameter changes are faster at the early stages of the aging process. This suggests a change of the oxidation mechanism during prolonged aging. The devised methodology of impedimetric biodiesel testing can be proposed as a fast and inexpensive method of fuel chemical stability evaluation, allowing for estimating the useful storage time of biodiesel in real conditions.

Suggested Citation

  • Krzysztof Biernat & Piotr Bocian & Paweł Bukrejewski & Krzysztof R. Noworyta, 2019. "Application of the Impedance Spectroscopy as a New Tool for Studying Biodiesel Fuel Aging Processes," Energies, MDPI, vol. 12(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:738-:d:208438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Fitri Yusop & Rizalman Mamat & Talal Yusaf & Gholamhassan Najafi & Mohd Hafizil Mat Yasin & Akasyah Mohd Khathri, 2018. "Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel," Energies, MDPI, vol. 11(5), pages 1-25, April.
    2. Sam Ki Yoon & Min Soo Kim & Han Joo Kim & Nag Jung Choi, 2014. "Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine," Energies, MDPI, vol. 7(12), pages 1-18, December.
    3. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    4. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    5. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    6. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    2. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan, 2017. "Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel," Energies, MDPI, vol. 10(1), pages 1-16, January.
    3. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    5. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    6. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    7. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Ho Young Kim & Jun Cong Ge & Nag Jung Choi, 2019. "Effects of Fuel Injection Pressure on Combustion and Emission Characteristics under Low Speed Conditions in a Diesel Engine Fueled with Palm Oil Biodiesel," Energies, MDPI, vol. 12(17), pages 1-14, August.
    9. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    10. M. Shahabuddin & M. Mofijur & Md. Bengir Ahmed Shuvho & M. A. K. Chowdhury & M. A. Kalam & H. H. Masjuki & M. A. Chowdhury, 2021. "A Study on the Corrosion Characteristics of Internal Combustion Engine Materials in Second-Generation Jatropha Curcas Biodiesel," Energies, MDPI, vol. 14(14), pages 1-15, July.
    11. Sharzali Che Mat & Mohamad Yusof Idroas & Yew Heng Teoh & Mohd Fadzli Hamid, 2018. "Physicochemical, Performance, Combustion and Emission Characteristics of Melaleuca Cajuputi Oil-Refined Palm Oil Hybrid Biofuel Blend," Energies, MDPI, vol. 11(11), pages 1-20, November.
    12. Farzad Jaliliantabar & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Artificial Neural Network Modeling and Sensitivity Analysis of Performance and Emissions in a Compression Ignition Engine Using Biodiesel Fuel," Energies, MDPI, vol. 11(9), pages 1-24, September.
    13. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Patchimpet, Jaran & Simpson, Benjamin K. & Sangkharak, Kanokphorn & Klomklao, Sappasith, 2020. "Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera," Renewable Energy, Elsevier, vol. 153(C), pages 861-869.
    15. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    16. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    17. Arun Teja Doppalapudi & Abul Kalam Azad & Mohammad Masud Kamal Khan, 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-18, March.
    18. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    19. Talal Yusaf & Mohd Kamal Kamarulzaman & Abdullah Adam & Sakinah Hisham & Devarajan Ramasamy & Kumaran Kadirgama & Mahendran Samykano & Sivaraos Subramaniam, 2022. "Physical-Chemical Properties Modification of Hermetia Illucens Larvae Oil and Diesel Fuel for the Internal Combustion Engines Application," Energies, MDPI, vol. 15(21), pages 1-17, October.
    20. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:738-:d:208438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.