IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5964-d1216150.html
   My bibliography  Save this article

Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas

Author

Listed:
  • Alexander García-Mariaca

    (Escuela de Ingeniería y Arquitectura, University of Zaragoza, María de Luna s/n, 50018 Zaragoza, Spain)

  • Jorge Villalba

    (Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria los Libertadores, Bogotá 111221, Colombia)

  • Uriel Carreño

    (Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria los Libertadores, Bogotá 111221, Colombia)

  • Didier Aldana

    (Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria los Libertadores, Bogotá 111221, Colombia)

Abstract

An experimental investigation into the effects of Jatropha biodiesel (JB) blends on the performance and emissions of a diesel engine was performed, and an economic and environmental assessment of the Jatropha curcas L. (JCL) crop for JB production and its use was also presented. The results revealed that when the engine operates with JB blends in proportions of up to 10%, the brake-specific fuel consumption (BSFC) increases to 37.5% at full engine load, and the engine’s thermal efficiency is reduced by 10% regarding diesel operation. A reduction in the specific emissions of carbon monoxide, unburned hydrocarbons, and particulate matter with JB blends of up to 75% of the engine load was found. On the other hand, specific carbon dioxide and nitrogen oxide emissions, with regard to diesel, increased by 21.8 and more than 100%, respectively. The lower heating value (LHV) was the property that most influenced the engine’s performance and emissions fuelled with JB blends, because JB has a lower value of LHV than diesel. Finally, the economic and environmental assessment showed that Colombian soil is well-suited to JCL crops. The use of JB instead of palm biodiesel could mean a decrease of 27,730 USD/day and 1588 kg/day of CO 2 emissions.

Suggested Citation

  • Alexander García-Mariaca & Jorge Villalba & Uriel Carreño & Didier Aldana, 2023. "Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas," Energies, MDPI, vol. 16(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5964-:d:1216150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fitri Nurfatriani & Ramawati & Galih Kartika Sari & Heru Komarudin, 2019. "Optimization of Crude Palm Oil Fund to Support Smallholder Oil Palm Replanting in Reducing Deforestation in Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    2. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk, 2012. "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends," Energy, Elsevier, vol. 37(1), pages 616-622.
    3. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Abedin, M.J. & Sanjid, A. & Rahman, Md. Mofijur, 2014. "Assessing idling effects on a compression ignition engine fueled with Jatropha and Palm biodiesel blends," Renewable Energy, Elsevier, vol. 68(C), pages 644-650.
    4. Luisa F. Lozano-Castellanos & José E. Méndez-Vanegas & Francisco Tomatis & Adriana Correa-Guimaraes & Luis Manuel Navas-Gracia, 2023. "Zoning of Potential Areas for the Production of Oleaginous Species in Colombia under Agroforestry Systems," Agriculture, MDPI, vol. 13(3), pages 1-14, March.
    5. Calderón, Silvia & Alvarez, Andrés Camilo & Loboguerrero, Ana María & Arango, Santiago & Calvin, Katherine & Kober, Tom & Daenzer, Kathryn & Fisher-Vanden, Karen, 2016. "Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets," Energy Economics, Elsevier, vol. 56(C), pages 575-586.
    6. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters," Renewable Energy, Elsevier, vol. 33(9), pages 1982-1988.
    7. Mario R. Giraldi-Díaz & Lorena De Medina-Salas & Eduardo Castillo-González & Max De la Cruz-Benavides, 2018. "Environmental Impact Associated with the Supply Chain and Production of Biodiesel from Jatropha curcas L. through Life Cycle Analysis," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    8. Jocelyn Alejandra Cortez-Núñez & María Eugenia Gutiérrez-Castillo & Violeta Y. Mena-Cervantes & Ángel Refugio Terán-Cuevas & Luis Raúl Tovar-Gálvez & Juan Velasco, 2020. "A GIS Approach Land Suitability and Availability Analysis of Jatropha Curcas L. Growth in Mexico as a Potential Source for Biodiesel Production," Energies, MDPI, vol. 13(22), pages 1-23, November.
    9. Anzhelika M. Eremeeva & Natalia K. Kondrasheva & Artyom F. Khasanov & Ivan L. Oleynik, 2023. "Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude," Energies, MDPI, vol. 16(5), pages 1-12, February.
    10. Prasad, Lalit & Pradhan, Subhalaxmi & Das, L.M. & Naik, S.N., 2012. "Experimental assessment of toxic phorbol ester in oil, biodiesel and seed cake of Jatropha curcas and use of biodiesel in diesel engine," Applied Energy, Elsevier, vol. 93(C), pages 245-250.
    11. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    12. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    13. Öner, Cengiz & Altun, Sehmus, 2009. "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine," Applied Energy, Elsevier, vol. 86(10), pages 2114-2120, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    2. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    3. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    4. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    5. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    6. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    7. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    8. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    9. How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
    10. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    11. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    12. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    13. Nguyen, Kim-Bao & Dan, Tomohisa & Asano, Ichiro, 2015. "Effect of double injection on combustion, performance and emissions of Jatropha water emulsion fueled direct-injection diesel engine," Energy, Elsevier, vol. 80(C), pages 746-755.
    14. Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
    15. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    16. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    17. Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
    18. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    19. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
    20. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5964-:d:1216150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.