IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3594-d383614.html
   My bibliography  Save this article

Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel

Author

Listed:
  • Armando Pérez

    (Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario #1000, Unidad Valle de las Palmas, Baja California CP. 21500, Mexico)

  • David Mateos

    (Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal S/N, Col. Insurgentes Este, Mexicali, Baja California 21280, Mexico)

  • Conrado García

    (Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal S/N, Col. Insurgentes Este, Mexicali, Baja California 21280, Mexico)

  • Camilo Caraveo

    (Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario #1000, Unidad Valle de las Palmas, Baja California CP. 21500, Mexico)

  • Gisela Montero

    (Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal S/N, Col. Insurgentes Este, Mexicali, Baja California 21280, Mexico)

  • Marcos Coronado

    (Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal S/N, Col. Insurgentes Este, Mexicali, Baja California 21280, Mexico)

  • Benjamín Valdez

    (Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal S/N, Col. Insurgentes Este, Mexicali, Baja California 21280, Mexico)

Abstract

The present work is about evaluating the emission characteristics of biodiesel-diesel blends in a reciprocating engine. The biodiesel was produced and characterized before the test. A virtual instrument was developed to evaluate the velocity, fuel consumption, temperature, and emissions of O 2 , CO, SO 2 , and NO from an ignition-compression engine of four cylinders with a constant rate of 850 rpm. The percentages of soybean-biodiesel (B) blended with Mexican-diesel (D) analyzed were 2% B-98% D (B2), 5% B-95% B (B5), and 20% B-80% D (B20). The biodiesel was obtained through a transesterification process and was characterized using Fourier-Transform Infrared spectroscopy and Raman spectroscopy. Our results indicate that CO emission is 6%, 10%, and 18% lower for B2, B5, and B20, respectively, in comparison with 100% (D100). The O 2 emission is 12% greater in B20 than D100. A reduction of 3% NO and 2.6% SO 2 was found in comparison to D100. The obtained results show 44.9 kJ/g of diesel’s lower heating value, this result which is 13% less than the biodiesel value, 2.8% less than B20, 1.3% than B5, and practically the same as B2. The specific viscosity stands out with 0.024 Poise for the B100 at 73 °C, which is 63% greater than D100. The infrared spectra show characteristics signals of esters groups (C-O) and the pronounced peak from the carbonyl group (C=O). It is observed that the increase in absorbance of the carbonyl group corresponds to an increase in biodiesel concentration.

Suggested Citation

  • Armando Pérez & David Mateos & Conrado García & Camilo Caraveo & Gisela Montero & Marcos Coronado & Benjamín Valdez, 2020. "Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel," Energies, MDPI, vol. 13(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3594-:d:383614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
    2. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk, 2012. "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends," Energy, Elsevier, vol. 37(1), pages 616-622.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Kibong Choi & Suhan Park & Hyun Gu Roh & Chang Sik Lee, 2019. "Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine," Energies, MDPI, vol. 12(11), pages 1-16, June.
    5. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    6. Belachew Tesfa & Fengshou Gu & Rakesh Mishra & Andrew Ball, 2014. "Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks," Energies, MDPI, vol. 7(1), pages 1-17, January.
    7. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    8. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    9. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.
    10. Kim, Hwanam & Choi, Byungchul, 2010. "The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine," Renewable Energy, Elsevier, vol. 35(1), pages 157-163.
    11. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    12. Kalam, M.A. & Masjuki, H.H. & Jayed, M.H. & Liaquat, A.M., 2011. "Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil," Energy, Elsevier, vol. 36(1), pages 397-402.
    13. Melo-Espinosa, Eliezer Ahmed & Piloto-Rodríguez, Ramón & Goyos-Pérez, Leonardo & Sierens, Roger & Verhelst, Sebastian, 2015. "Emulsification of animal fats and vegetable oils for their use as a diesel engine fuel: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 623-633.
    14. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    15. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part II: Experimental study," Energy, Elsevier, vol. 72(C), pages 17-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. G. M. B. Mustayen & M. G. Rasul & Xiaolin Wang & M. M. K. Bhuiya & Michael Negnevitsky & James Hamilton, 2022. "Theoretical and Experimental Analysis of Engine Performance and Emissions Fuelled with Jojoba Biodiesel," Energies, MDPI, vol. 15(17), pages 1-22, August.
    2. Paweł Grabowski & Przemysław Jarosiński, 2021. "Examination of Selected Physicochemical Properties of Biodiesel after Electron Beam Sterilization in Flow System," Energies, MDPI, vol. 14(5), pages 1-12, March.
    3. Piotr Bielaczyc & Wojciech Honkisz & Joseph Woodburn & Andrzej Szczotka & Fabrizio Forloni & Dominique Lesueur & Barouch Giechaskiel, 2021. "Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories," Energies, MDPI, vol. 14(23), pages 1-16, December.
    4. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    2. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    3. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    6. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    7. Efe, Şükran & Ceviz, Mehmet Akif & Temur, Hakan, 2018. "Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 142-151.
    8. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    9. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    10. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    11. Sun, Chunhua & Liu, Yu & Qiao, Xinqi & Ju, Dehao & Tang, Qing & Fang, Xiaoyuan & Zhou, Feng, 2020. "Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine," Energy, Elsevier, vol. 197(C).
    12. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    13. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    14. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    15. Lin, Kuang C. & Dahiya, Anurag & Tao, Hairong & Kao, Fan-Hsu, 2022. "Combustion mechanism and CFD investigation of methyl isobutanoate as a component of biodiesel surrogate," Energy, Elsevier, vol. 249(C).
    16. López, I. & Pinzi, S. & Leiva-Candia, D. & Dorado, M.P., 2016. "Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends," Energy, Elsevier, vol. 117(P2), pages 398-404.
    17. Bora, Bhaskor J. & Saha, Ujjwal K., 2015. "Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels," Renewable Energy, Elsevier, vol. 81(C), pages 490-498.
    18. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    19. Flavio Caresana & Marco Bietresato & Massimiliano Renzi, 2021. "Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    20. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3594-:d:383614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.