IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8101-d694406.html
   My bibliography  Save this article

Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories

Author

Listed:
  • Piotr Bielaczyc

    (BOSMAL Automotive R&D Institute Ltd., 43300 Bielsko-Biala, Poland)

  • Wojciech Honkisz

    (BOSMAL Automotive R&D Institute Ltd., 43300 Bielsko-Biala, Poland)

  • Joseph Woodburn

    (BOSMAL Automotive R&D Institute Ltd., 43300 Bielsko-Biala, Poland)

  • Andrzej Szczotka

    (BOSMAL Automotive R&D Institute Ltd., 43300 Bielsko-Biala, Poland)

  • Fabrizio Forloni

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Dominique Lesueur

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Barouch Giechaskiel

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

Abstract

The Euro 4 regulation, applicable since 2016 for L-category vehicles (i.e., two and three-wheelers, and mini cars) reduced the emission limits, but also introduced a new cycle, the WMTC (World Harmonized Motorcycle Test Cycle). The emission studies of Euro 4 motorcycles are limited, and most importantly there are no published studies comparing the results of different laboratories applying the new cycle. In this study we compared the particle and gaseous pollutants of one Euro 4 motorcycle measured in two laboratories in 2017 and 2020. The gaseous pollutant results had a variance (one standard deviation of the means) of 0.5% for CO 2 , 4–19% for CO, NO x , HC (hydrocarbons) and SPN (Solid Particle Number). The particulate matter mass results had higher variance of 50–60%. Additional tests with open configuration to mimic dilution at the tailpipe gave equivalent results to the closed configuration for the gaseous pollutants and SPN. The total particles (including volatiles) had significant differences between the two configurations, with the closed configuration giving higher results. The main conclusion of this study is that the new procedures have very good reproducibility, even for the SPN that is not regulated for L-category vehicles. However, the measurement of total particles needs attention due to the high sensitivity of volatile particles to the sampling conditions.

Suggested Citation

  • Piotr Bielaczyc & Wojciech Honkisz & Joseph Woodburn & Andrzej Szczotka & Fabrizio Forloni & Dominique Lesueur & Barouch Giechaskiel, 2021. "Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories," Energies, MDPI, vol. 14(23), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8101-:d:694406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    2. Belachew Tesfa & Fengshou Gu & Rakesh Mishra & Andrew Ball, 2014. "Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks," Energies, MDPI, vol. 7(1), pages 1-17, January.
    3. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    4. Yuh-Yih Wu & Ching-Tzan Jang, 2019. "Combustion Analysis of Homogeneous Charge Compression Ignition in a Motorcycle Engine Using a Dual-Fuel with Exhaust Gas Recirculation," Energies, MDPI, vol. 12(5), pages 1-21, March.
    5. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    6. Fu, Jianqin & Deng, Banglin & Liu, Xiaoqiang & Shu, Jun & Xu, Ying & Liu, Jingping, 2020. "The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle," Energy, Elsevier, vol. 211(C).
    7. Asif Iqbal & Shirina Afroze & Md. Mizanur Rahman, 2020. "Vehicular PM Emissions and Urban Public Health Sustainability: A Probabilistic Analysis for Dhaka City," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    8. Barouch Giechaskiel, 2020. "Gaseous and Particulate Emissions of a Euro 4 Motorcycle and Effect of Driving Style and Open or Closed Sampling Configuration," Sustainability, MDPI, vol. 12(21), pages 1-12, November.
    9. Armando Pérez & David Mateos & Conrado García & Camilo Caraveo & Gisela Montero & Marcos Coronado & Benjamín Valdez, 2020. "Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel," Energies, MDPI, vol. 13(14), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barouch Giechaskiel, 2020. "Gaseous and Particulate Emissions of a Euro 4 Motorcycle and Effect of Driving Style and Open or Closed Sampling Configuration," Sustainability, MDPI, vol. 12(21), pages 1-12, November.
    2. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    3. Meshack Hawi & Ahmed Elwardany & Mohamed Ismail & Mahmoud Ahmed, 2019. "Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles," Energies, MDPI, vol. 12(5), pages 1-18, February.
    4. Armando Pérez & David Mateos & Conrado García & Camilo Caraveo & Gisela Montero & Marcos Coronado & Benjamín Valdez, 2020. "Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel," Energies, MDPI, vol. 13(14), pages 1-14, July.
    5. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    6. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    7. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    8. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    9. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    10. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    11. Kolakoti, Aditya & Koten, Hasan, 2022. "Effect of supercharging in neat biodiesel fuelled naturally aspirated diesel engine combustion, vibration and emission analysis," Energy, Elsevier, vol. 260(C).
    12. Md. Arif Hossen & Israt Jahan Ruva & Md. Mehedi Hassan Masum & Prabal Barua, 2022. "Status Of Air Quality And Noise Level With Associated Health Risk Vicinity To Shipbreaking Yards Of Bangladesh," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 6(2), pages 83-93, September.
    13. Juliet Namukasa & Sheila Namagembe & Faridah Nakayima, 2020. "Fuel Efficiency Vehicle Adoption and Carbon Emissions in a Country Context," International Journal of Global Sustainability, Macrothink Institute, vol. 4(1), pages 1-21, December.
    14. Dimitrios N. Tziourtzioumis & Anastassios M. Stamatelos, 2019. "Diesel-Injection Equipment Parts Deterioration after Prolonged Use of Biodiesel," Energies, MDPI, vol. 12(10), pages 1-21, May.
    15. Zhenbin Chen & Jiaojun Deng & Haisheng Zhen & Chenyu Wang & Li Wang, 2022. "Experimental Investigation of Hydrous Ethanol Gasoline on Engine Noise, Cyclic Variations and Combustion Characteristics," Energies, MDPI, vol. 15(5), pages 1-17, February.
    16. Xianchun Tan & Tangqi Tu & Baihe Gu & Yuan Zeng & Tianhang Huang & Qianqian Zhang, 2021. "Assessing CO 2 Emissions from Passenger Transport with the Mixed-Use Development Model in Shenzhen International Low-Carbon City," Land, MDPI, vol. 10(2), pages 1-19, February.
    17. Paweł Grabowski & Przemysław Jarosiński, 2021. "Examination of Selected Physicochemical Properties of Biodiesel after Electron Beam Sterilization in Flow System," Energies, MDPI, vol. 14(5), pages 1-12, March.
    18. Chalita Kaewbuddee & Ekarong Sukjit & Jiraphon Srisertpol & Somkiat Maithomklang & Khatha Wathakit & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn, 2020. "Evaluation of Waste Plastic Oil-Biodiesel Blends as Alternative Fuels for Diesel Engines," Energies, MDPI, vol. 13(11), pages 1-16, June.
    19. Sinigaglia, Tiago & Eduardo Santos Martins, Mario & Cezar Mairesse Siluk, Julio, 2022. "Technological evolution of internal combustion engine vehicle: A patent data analysis," Applied Energy, Elsevier, vol. 306(PA).
    20. Homeyra Piri & Massimiliano Renzi & Marco Bietresato, 2023. "Technical Implications of the Use of Biofuels in Agricultural and Industrial Compression-Ignition Engines with a Special Focus on the Interactions with (Bio)lubricants," Energies, MDPI, vol. 17(1), pages 1-45, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8101-:d:694406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.