IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2015i1p14-d61326.html
   My bibliography  Save this article

Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data

Author

Listed:
  • Christopher D. Elvidge

    (Earth Observation Group, National Centers for Environmental Information, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80205, USA)

  • Mikhail Zhizhin

    (Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, CO 80303, USA
    Russian Space Research Institute, Moscow 117997, Russia)

  • Kimberly Baugh

    (Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, CO 80303, USA)

  • Feng-Chi Hsu

    (Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, CO 80303, USA)

  • Tilottama Ghosh

    (Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, CO 80303, USA)

Abstract

A set of methods are presented for the global survey of natural gas flaring using data collected by the National Aeronautics and Space Administration/National Oceanic and Atmospheric Administration NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS). The accuracy of the flared gas volume estimates is rated at ±9.5%. VIIRS is particularly well suited for detecting and measuring the radiant emissions from gas flares through the collection of shortwave and near-infrared data at night, recording the peak radiant emissions from flares. In 2012, a total of 7467 individual flare sites were identified. The total flared gas volume is estimated at 143 (±13.6) billion cubic meters (BCM), corresponding to 3.5% of global production. While the USA has the largest number of flares, Russia leads in terms of flared gas volume. Ninety percent of the flared gas volume was found in upstream production areas, 8% at refineries and 2% at liquified natural gas (LNG) terminals. The results confirm that the bulk of natural gas flaring occurs in upstream production areas. VIIRS data can provide site-specific tracking of natural gas flaring for use in evaluating efforts to reduce and eliminate routine flaring.

Suggested Citation

  • Christopher D. Elvidge & Mikhail Zhizhin & Kimberly Baugh & Feng-Chi Hsu & Tilottama Ghosh, 2015. "Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data," Energies, MDPI, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:9:y:2015:i:1:p:14-:d:61326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonibare, J.A. & Akeredolu, F.A., 2006. "Natural gas domestic market development for total elimination of routine flares in Nigeria's upstream petroleum operations," Energy Policy, Elsevier, vol. 34(6), pages 743-753, April.
    2. Christopher D. Elvidge & Daniel Ziskin & Kimberly E. Baugh & Benjamin T. Tuttle & Tilottama Ghosh & Dee W. Pack & Edward H. Erwin & Mikhail Zhizhin, 2009. "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, MDPI, vol. 2(3), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongxue Liu & Yuling Pu & Xueying Hu & Yanzhu Dong & Wei Wu & Chuanmin Hu & Yuzhong Zhang & Songhan Wang, 2023. "Global declines of offshore gas flaring inadequate to meet the 2030 goal," Nature Sustainability, Nature, vol. 6(9), pages 1095-1102, September.
    2. Lu, Rong, 2020. "Application of machine learning to gas flaring," Thesis Commons g6yvq, Center for Open Science.
    3. Caihong Ma & Xin Sui & Yi Zeng & Jin Yang & Yanmei Xie & Tianzhu Li & Pengyu Zhang, 2022. "Classification of Industrial Heat Source Objects Based on Active Fire Point Density Segmentation and Spatial Topological Correlation Analysis in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    4. Bhaskar Sinha & Supriyo Roy & Manju Bhagat, 2020. "Sustainable Green Policy by Managing Flare Gas Recovery: A Case with Middle East Oil and Gas Industry," Vision, , vol. 24(1), pages 35-46, March.
    5. Hamza Semmari & Abdelkader Filali & Sofiane Aberkane & Renaud Feidt & Michel Feidt, 2020. "Flare Gas Waste Heat Recovery: Assessment of Organic Rankine Cycle for Electricity Production and Possible Coupling with Absorption Chiller," Energies, MDPI, vol. 13(9), pages 1-16, May.
    6. Keyang Zhou & Yutian Liang & Chen Zhong & Jiaqi Zeng & Zhengke Zhou, 2022. "Spatial Features of Urban Expansion in Vietnam Based on Long-Term Nighttime Lights Data," Land, MDPI, vol. 11(5), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Aminu & Kouhy, Reza, 2013. "Gas flaring in Nigeria: Analysis of changes in its consequent carbon emission and reporting," Accounting forum, Elsevier, vol. 37(2), pages 124-134.
    2. Tilottama Ghosh & Christopher D. Elvidge & Paul C. Sutton & Kimberly E. Baugh & Daniel Ziskin & Benjamin T. Tuttle, 2010. "Creating a Global Grid of Distributed Fossil Fuel CO 2 Emissions from Nighttime Satellite Imagery," Energies, MDPI, vol. 3(12), pages 1-19, December.
    3. Thomas Akpan Harry & Ekemini John Peter & Nsidibe Akpan Udoduk, 2022. "Environmental Impact Assessment Of Oil Producing Communities In Part Of The Niger Delta. A Case Study Of Ibeno, Ikot Abasi, Onna And Esit-Eket Local Government Area In Akwa Ibom State, Nigeria," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 5(2), pages 49-56, April.
    4. Boslett, Andrew & Hill, Elaine & Ma, Lala & Zhang, Lujia, 2021. "Rural light pollution from shale gas development and associated sleep and subjective well-being," Resource and Energy Economics, Elsevier, vol. 64(C).
    5. Yaxi Gong & Xiang Ji & Yuan Zhang & Shanshan Cheng, 2023. "Spatial Vitality Evaluation and Coupling Regulation Mechanism of a Complex Ecosystem in Lixiahe Plain Based on Multi-Source Data," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    6. Xuemei Wang & Mingguo Ma, 2017. "The luminous intensity of regional ‘night-light’ output can predict the growing volume of published scientific research by ‘luminaries’ in developing countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 1005-1010, February.
    7. Andrew M. Linke & Frank D. W. Witmer & John O'Loughlin, 2012. "Space-Time Granger Analysis of the War in Iraq: A Study of Coalition and Insurgent Action-Reaction," International Interactions, Taylor & Francis Journals, vol. 38(4), pages 402-425, September.
    8. Juergen Bitzer & Erkan Goeren, 2018. "Foreign Aid and Subnational Development: A Grid Cell Analysis," Working Papers V-407-18, University of Oldenburg, Department of Economics, revised Mar 2018.
    9. Dawson, C.J. & Hilton, J., 2011. "Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus," Food Policy, Elsevier, vol. 36(S1), pages 14-22.
    10. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    11. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    12. Michał Myck & Mateusz Najsztub, 2020. "Implications of the Polish 1999 administrative reform for regional socio‐economic development," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 28(4), pages 559-579, October.
    13. Ch, Rafael & Martin, Diego A. & Vargas, Juan F., 2021. "Measuring the size and growth of cities using nighttime light," Journal of Urban Economics, Elsevier, vol. 125(C).
    14. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    15. Mulubrhan Amare & Channing Arndt & Kibrom A Abay & Todd Benson, 2020. "Urbanization and Child Nutritional Outcomes," The World Bank Economic Review, World Bank, vol. 34(1), pages 63-74.
    16. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    17. Gibson, John & Datt, Gaurav & Murgai, Rinku & Ravallion, Martin, 2017. "For India’s Rural Poor, Growing Towns Matter More Than Growing Cities," World Development, Elsevier, vol. 98(C), pages 413-429.
    18. Liang, Hanwei & Dong, Liang & Tanikawa, Hiroki & Zhang, Ning & Gao, Zhiqiu & Luo, Xiao, 2017. "Feasibility of a new-generation nighttime light data for estimating in-use steel stock of buildings and civil engineering infrastructures," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 11-23.
    19. Jonas Hveding Hamang, 2022. "Local economic development and oil discoveries," Working Papers No 03/2022, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    20. Jian-Zhou Wei & Kai Zheng & Feng Zhang & Chao Fang & Yu-Yu Zhou & Xue-Cao Li & Feng-Min Li & Jian-Sheng Ye, 2019. "Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau," Sustainability, MDPI, vol. 11(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2015:i:1:p:14-:d:61326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.