IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7413-d1273308.html
   My bibliography  Save this article

Addressing Challenges and Outcomes in the Biogas Sector: An Analysis of Efficiency, Economic Savings, and Environmental Impacts Using an Advanced SWOT Model

Author

Listed:
  • Luca Esposito

    (Karelian Institute, University of Eastern Finland, 80101 Joensuu, Finland
    Department of Economics and Statistics, University of Salerno, 84084 Fisciano, Italy)

  • Chiara Vecchio

    (CF Energy Service SRL, Altavilla Silentina, 84045 Salerno, Italy)

  • Giancarlo Cattaneo

    (CF Energy Service SRL, Altavilla Silentina, 84045 Salerno, Italy)

  • Zhouyi Gu

    (School of Information Technology, Zhejiang Financial College, Hangzhou 310018, China)

  • Ester Scotto di Perta

    (Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy)

Abstract

This study, through the use of company data, offers an in-depth analysis of the current situation and future prospects of biogas plants and how they can promote economic advantages and environmental benefits. The geographical context of the Piana del Sele (Salerno, Italy) was chosen on the basis of objective criteria, including its relevance in the agro-industrial sector and the availability of accurate and reliable company data that was collected through IT systems, including software business performance monitoring and digital data analysis. This choice was fundamental to guaranteeing the validity and representativeness of our analyses and results. From a methodological point of view, mathematical formulas and algorithms were used, which allowed the calculation of the biogas producibility indices by type of biomass as well as the quantification of the effluents produced to then estimate the quantification of the biogas and the interconnected economic savings. Furthermore, this study uses the SWOT (strengths, weaknesses, opportunities, and threats) approach in an innovative way by integrating renewable energy communities into it. The aim is to demonstrate the potential of biogas plants and how energy communities can transform weaknesses and threats into opportunities. The results show that the integration of biogas plants into the farm environment offers considerable potential, and although it is a challenge for small and medium-sized farms, it could bring energy self-sufficiency and economic surplus. Furthermore, the integration of renewable energy communities would be able to promote the diversification of energy supply and transform weaknesses and threats into opportunities.

Suggested Citation

  • Luca Esposito & Chiara Vecchio & Giancarlo Cattaneo & Zhouyi Gu & Ester Scotto di Perta, 2023. "Addressing Challenges and Outcomes in the Biogas Sector: An Analysis of Efficiency, Economic Savings, and Environmental Impacts Using an Advanced SWOT Model," Energies, MDPI, vol. 16(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7413-:d:1273308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Polin Kumar Saha & Shahida Akhter & Azizul Hassan & Ashraful Alam Anas & Israt Jahan Shathi, 2021. "Agri-tourism in Bangladesh: The Investment and Development Perspective," Springer Books, in: Azizul Hassan (ed.), Tourism in Bangladesh: Investment and Development Perspectives, chapter 0, pages 223-244, Springer.
    2. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    3. Md. Alauddin & C. M. Atiqur Rahman & Azizul Hassan, 2021. "Investment and Development for Agri-tourism in Bangladesh," Springer Books, in: Azizul Hassan (ed.), Tourism in Bangladesh: Investment and Development Perspectives, chapter 0, pages 209-222, Springer.
    4. Belflower, Jeff B. & Bernard, John K. & Gattie, David K. & Hancock, Dennis W. & Risse, Lawrence M. & Alan Rotz, C., 2012. "A case study of the potential environmental impacts of different dairy production systems in Georgia," Agricultural Systems, Elsevier, vol. 108(C), pages 84-93.
    5. Aleksandra Lubańska & Jan K. Kazak, 2023. "The Role of Biogas Production in Circular Economy Approach from the Perspective of Locality," Energies, MDPI, vol. 16(9), pages 1-15, April.
    6. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    7. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    8. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    9. Yasar, Abdullah & Nazir, Saba & Tabinda, Amtul Bari & Nazar, Masooma & Rasheed, Rizwan & Afzaal, Muhammad, 2017. "Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan," Renewable Energy, Elsevier, vol. 108(C), pages 19-25.
    10. Morgan, Cynthia & Pasurka, Carl & Shadbegian, Ron & Belova, Anna & Casey, Brendan, 2023. "Estimating the cost of environmental regulations and technological change with limited information," Ecological Economics, Elsevier, vol. 204(PA).
    11. Alessandro Neri & Bruno Bernardi & Giuseppe Zimbalatti & Souraya Benalia, 2023. "An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production," Energies, MDPI, vol. 16(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjoy Kumar Acharjee, 2023. "Prospects of Culinary Tourism in Bangladesh," International Journal of Science and Business, IJSAB International, vol. 25(1), pages 139-150.
    2. Ulrich Witt & Christian Gross, 2020. "The rise of the “service economy” in the second half of the twentieth century and its energetic contingencies," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 231-246, April.
    3. Li, Weiping & Chen, Xiaoqi & Huang, Jiashun & Gong, Xu & Wu, Wei, 2022. "Do environmental regulations affect firm's cash holdings? Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 112(C).
    4. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    5. Niu, Tong & Yao, Xilong & Shao, Shuai & Li, Ding & Wang, Wenxi, 2018. "Environmental tax shocks and carbon emissions: An estimated DSGE model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 9-17.
    6. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    7. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    8. Jintao Zhang & Zhen Yang & Li Meng & Lu Han, 2022. "Environmental regulations and enterprises innovation performance: the role of R&D investments and political connections," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4088-4109, March.
    9. Stuart Evans & Michael A. Mehling & Robert A. Ritz & Paul Sammon, 2021. "Border carbon adjustments and industrial competitiveness in a European Green Deal," Climate Policy, Taylor & Francis Journals, vol. 21(3), pages 307-317, March.
    10. Maria Crescimanno & Claudio Mirabella & Valeria Borsellino & Emanuele Schimmenti & Demetris Vrontis & Salvatore Tinervia & Antonino Galati, 2023. "How Organizational Resources and Managerial Features Affect Business Performance: An Analysis in the Greek Wine Industry," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    11. Gorbach, O.G. & Kost, C. & Pickett, C., 2022. "Review of internal carbon pricing and the development of a decision process for the identification of promising Internal Pricing Methods for an Organisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Themann, Michael & Koch, Nicolas, 2021. "Catching up and falling behind: Cross-country evidence on the impact of the EU ETS on firm productivity," Ruhr Economic Papers 904, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Yushchenko, Alisa & Patel, Martin Kumar, 2017. "Cost-effectiveness of energy efficiency programs: How to better understand and improve from multiple stakeholder perspectives?," Energy Policy, Elsevier, vol. 108(C), pages 538-550.
    14. repec:hal:spmain:info:hdl:2441/6d7es28iae9pjoil7092hs41h3 is not listed on IDEAS
    15. Michael Gmeiner & Robert Gmeiner, 2022. "Regulation Enforcement," Journal of Labor Research, Springer, vol. 43(2), pages 163-202, June.
    16. Aldy Darwili & Enno Schröder, 2023. "On the Interpretation and Measurement of Technology-Adjusted Emissions Embodied in Trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 65-98, January.
    17. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    18. Takahiko Kiso, 2019. "Environmental Policy and Induced Technological Change: Evidence from Automobile Fuel Economy Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 785-810, October.
    19. Naegele, Helene & Zaklan, Aleksandar, 2019. "Does the EU ETS cause carbon leakage in European manufacturing?," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 125-147.
    20. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    21. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7413-:d:1273308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.