IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1464-d512536.html
   My bibliography  Save this article

Application of System Dynamic Modelling for Evaluation of Carbon Mitigation Strategies in Cement Industries: A Comparative Overview of the Current State of the Art

Author

Listed:
  • Akhil Kunche

    (Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Bożena Mielczarek

    (Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

Cement is the key ingredient in concrete, which is the most consumed resource on the planet after water. As an energy-intensive industry, cement production is one of the largest sources of greenhouse emissions in the world today. The demand for cement is synonymous with the growth in infrastructure demand and per-capita gross domestic product in the world, calling the need for mitigation measures within the industry in order to contribute to the global climate change efforts. System dynamics (SD) is a simulation approach that is used for studying the nonlinear behaviours in complex systems over time, often used in industrial domains for emission forecasts as well as policy experimentation. With the adoption rates of mitigation strategies in the cement industry being inadequate, there is a need for improvisation in policymaking through better decision-support tools. In this paper, a comparative overview of the studies that specifically utilise the SD approach for evaluation of carbon mitigation strategies in the cement industry is presented on the basis of their scope, model description, scenarios tested, and featured mitigation methods. Additionally, the potential for improvements in future studies is discussed.

Suggested Citation

  • Akhil Kunche & Bożena Mielczarek, 2021. "Application of System Dynamic Modelling for Evaluation of Carbon Mitigation Strategies in Cement Industries: A Comparative Overview of the Current State of the Art," Energies, MDPI, vol. 14(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1464-:d:512536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Sun & Jingmin Wang & Yadi Ren, 2016. "Research on CO 2 emissions from China's electric power industry based on system dynamics model," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 22(4), pages 423-439.
    2. Lin Zhu & Lichun He & Peipei Shang & Yingchun Zhang & Xiaojun Ma, 2018. "Influencing Factors and Scenario Forecasts of Carbon Emissions of the Chinese Power Industry: Based on a Generalized Divisia Index Model and Monte Carlo Simulation," Energies, MDPI, vol. 11(9), pages 1-26, September.
    3. Eirini Grammatiki Pagoni & Patroklos Georgiadis, 2020. "System dynamics approaches to public–private partnerships: A literature review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(2), pages 277-291, March.
    4. Liu, Xiao & Hang, Ye & Wang, Qunwei & Zhou, Dequn, 2020. "Flying into the future: A scenario-based analysis of carbon emissions from China's civil aviation," Journal of Air Transport Management, Elsevier, vol. 85(C).
    5. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    6. Mauricio Uriona & Sara S (Saartjie) Grobbelaar, 2019. "Innovation system policy analysis through system dynamics modelling: A systematic review," Science and Public Policy, Oxford University Press, vol. 46(1), pages 28-44.
    7. Li, Qiang & Zhang, Wenjuan & Li, Huiquan & He, Peng, 2017. "CO2 emission trends of China's primary aluminum industry: A scenario analysis using system dynamics model," Energy Policy, Elsevier, vol. 105(C), pages 225-235.
    8. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
    9. Marcel Boyer & Jean-Pierre Ponssard, 2013. "Economic analysis of the European cement industry," CIRANO Working Papers 2013s-47, CIRANO.
    10. Saysel, Ali Kerem & Hekimoğlu, Mustafa, 2013. "Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach," Energy Policy, Elsevier, vol. 60(C), pages 675-686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhil Kunche & Bożena Mielczarek, 2021. "Application of System Dynamic Modelling for Evaluation of CO 2 Emissions and Expenditure for Captive Power Generation Scenarios in the Cement Industry," Energies, MDPI, vol. 14(11), pages 1-22, May.
    2. Oluwafemi E. Ige & Oludolapo A. Olanrewaju, 2023. "Comparative Life Cycle Assessment of Different Portland Cement Types in South Africa," Clean Technol., MDPI, vol. 5(3), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, vol. 9(12), pages 1-18, December.
    2. Xiaoqiao Geng & Yuanqiao Wen & Chunhui Zhou & Changshi Xiao, 2017. "Establishment of the Sustainable Ecosystem for the Regional Shipping Industry Based on System Dynamics," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    3. Jia, Shuwei & Liu, Xiaolu & Yan, Guangle, 2019. "Effect of APCF policy on the haze pollution in China: A system dynamics approach," Energy Policy, Elsevier, vol. 125(C), pages 33-44.
    4. Yunna, Wu & Kaifeng, Chen & Yisheng, Yang & Tiantian, Feng, 2015. "A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 235-243.
    5. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    6. Herui Cui & Ruirui Wu & Tian Zhao, 2018. "Decomposition and Forecasting of CO 2 Emissions in China’s Power Sector Based on STIRPAT Model with Selected PLS Model and a Novel Hybrid PLS-Grey-Markov Model," Energies, MDPI, vol. 11(11), pages 1-19, November.
    7. Song Han & Changqing Lin & Baosheng Zhang & Arash Farnoosh, 2019. "Projections and Recommendations for Energy Structure and Industrial Structure Development in China through 2030: A System Dynamics Model," Post-Print hal-02408957, HAL.
    8. Song Han & Changqing Lin & Baosheng Zhang & Arash Farnoosh, 2019. "Projections and Recommendations for Energy Structure and Industrial Structure Development in China through 2030: A System Dynamics Model," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    9. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    10. Steve Harris & Jan Weinzettel & Gregor Levin, 2020. "Implications of Low Carbon City Sustainability Strategies for 2050," Sustainability, MDPI, vol. 12(13), pages 1-23, July.
    11. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    13. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    14. Maruccia, Ylenia & Solazzo, Gianluca & Del Vecchio, Pasquale & Passiante, Giuseppina, 2020. "Evidence from Network Analysis application to Innovation Systems and Quintuple Helix," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    15. Yingyi Huang & Yuliya Mamatok & Chun Jin, 2021. "Decision-making instruments for container seaport sustainable development: management platform and system dynamics model," Environment Systems and Decisions, Springer, vol. 41(2), pages 212-226, June.
    16. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    17. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    18. Xiaoqing Zhu & Tiancheng Zhang & Weijun Gao & Danying Mei, 2020. "Analysis on Spatial Pattern and Driving Factors of Carbon Emission in Urban–Rural Fringe Mixed-Use Communities: Cases Study in East Asia," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    19. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    20. Akhil Kunche & Bożena Mielczarek, 2021. "Application of System Dynamic Modelling for Evaluation of CO 2 Emissions and Expenditure for Captive Power Generation Scenarios in the Cement Industry," Energies, MDPI, vol. 14(11), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1464-:d:512536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.