IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p742-d97541.html
   My bibliography  Save this article

Establishment of the Sustainable Ecosystem for the Regional Shipping Industry Based on System Dynamics

Author

Listed:
  • Xiaoqiao Geng

    () (School of Navigation, Wuhan University of Technology, Wuhan 430070, Hubei, China
    Hubei Key Laboratory of Inland Shipping Technology, Wuhan 430063, Hubei, China
    National Engineering Research Center for Water Transport Safety, Wuhan 430070, Hubei, China)

  • Yuanqiao Wen

    () (School of Navigation, Wuhan University of Technology, Wuhan 430070, Hubei, China
    Hubei Key Laboratory of Inland Shipping Technology, Wuhan 430063, Hubei, China
    National Engineering Research Center for Water Transport Safety, Wuhan 430070, Hubei, China)

  • Chunhui Zhou

    () (School of Navigation, Wuhan University of Technology, Wuhan 430070, Hubei, China
    Hubei Key Laboratory of Inland Shipping Technology, Wuhan 430063, Hubei, China
    National Engineering Research Center for Water Transport Safety, Wuhan 430070, Hubei, China)

  • Changshi Xiao

    () (School of Navigation, Wuhan University of Technology, Wuhan 430070, Hubei, China
    Hubei Key Laboratory of Inland Shipping Technology, Wuhan 430063, Hubei, China
    National Engineering Research Center for Water Transport Safety, Wuhan 430070, Hubei, China)

Abstract

The rapid development of the shipping industry has brought great economic benefits but at a great environmental cost; exhaust emissions originating from ships are increasing, causing serious atmospheric pollution. Hence, the mitigation of ship exhaust emissions and the establishment of the sustainable ecosystem have become urgent tasks, which will require complicated and comprehensive systematic approaches to solve. We address this problem by establishing a System Dynamics (SD) model to help mitigate regional ship exhaust emissions without restricting economic growth and promote the development of the sustainable ecosystem. Factors correlated with ship exhaust emissions are identified, and a causal loop diagram is drawn to describe the complicated interrelations among the correlated factors. Then, a stock-and-flow diagram is designed and variable equations and parameter values are determined to quantitatively describe the dynamic relations among different elements. After verifying the effectiveness of the model, different scenarios for the sustainable development in the study area were set by changing the values of the controlling variables. The variation trends of the exhaust emissions and economic benefits for Qingdao port under different scenarios were predicted for the years 2015–2025. By comparing the simulation results, the effects of different sustainable development measures were analyzed, providing a reference for the promotion of the harmonious development of the regional environment and economy.

Suggested Citation

  • Xiaoqiao Geng & Yuanqiao Wen & Chunhui Zhou & Changshi Xiao, 2017. "Establishment of the Sustainable Ecosystem for the Regional Shipping Industry Based on System Dynamics," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:742-:d:97541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/742/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Trappey, Amy J.C. & Trappey, Charles & Hsiao, C.T. & Ou, Jerry J.R. & Li, S.J. & Chen, Kevin W.P., 2012. "An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy," Energy Policy, Elsevier, vol. 45(C), pages 510-515.
    2. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    3. Stepp, Matthew D. & Winebrake, James J. & Hawker, J. Scott & Skerlos, Steven J., 2009. "Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness," Energy Policy, Elsevier, vol. 37(7), pages 2774-2787, July.
    4. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
    5. Abbas, Khaled A. & Bell, Michael G. H., 1994. "System dynamics applicability to transportation modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 373-390, September.
    6. Saysel, Ali Kerem & Hekimoğlu, Mustafa, 2013. "Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach," Energy Policy, Elsevier, vol. 60(C), pages 675-686.
    7. Steve Engelen & Hilda Meersman & Eddy Van De Voorde, 2006. "Using system dynamics in maritime economics: an endogenous decision model for shipowners in the dry bulk sector," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(2), pages 141-158, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuliya Mamatok & Yingyi Huang & Chun Jin & Xingqun Cheng, 2019. "A System Dynamics Model for CO 2 Mitigation Strategies at a Container Seaport," Sustainability, MDPI, Open Access Journal, vol. 11(10), pages 1-19, May.
    2. Yan Li & Xiaohan Zhang & Kaiyue Lin & Qingbo Huang, 2019. "The Analysis of a Simulation of a Port–City Green Cooperative Development, Based on System Dynamics: A Case Study of Shanghai Port, China," Sustainability, MDPI, Open Access Journal, vol. 11(21), pages 1-20, October.
    3. Jelena Nikcevic, 2018. "Montenegro on the Path to Paris MoU Accession: Towards Achieving a Sustainable Shipping Industry," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-14, June.
    4. Albert Ping Chuen Chan & Amos Darko & Ernest Effah Ameyaw, 2017. "Strategies for Promoting Green Building Technologies Adoption in the Construction Industry—An International Study," Sustainability, MDPI, Open Access Journal, vol. 9(6), pages 1-18, June.
    5. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    2. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, Open Access Journal, vol. 9(12), pages 1-18, December.
    3. Jia, Shuwei & Liu, Xiaolu & Yan, Guangle, 2019. "Effect of APCF policy on the haze pollution in China: A system dynamics approach," Energy Policy, Elsevier, vol. 125(C), pages 33-44.
    4. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, Open Access Journal, vol. 13(1), pages 1-1, December.
    5. Song Han & Changqing Lin & Baosheng Zhang & Arash Farnoosh, 2019. "Projections and Recommendations for Energy Structure and Industrial Structure Development in China through 2030: A System Dynamics Model," Post-Print hal-02408957, HAL.
    6. Yunna, Wu & Kaifeng, Chen & Yisheng, Yang & Tiantian, Feng, 2015. "A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 235-243.
    7. Song Han & Changqing Lin & Baosheng Zhang & Arash Farnoosh, 2019. "Projections and Recommendations for Energy Structure and Industrial Structure Development in China through 2030: A System Dynamics Model," Sustainability, MDPI, Open Access Journal, vol. 11(18), pages 1-20, September.
    8. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    9. Yoo, Sunbin & Koh, Kyung Woong & Yoshida, Yoshikuni & Wakamori, Naoki, 2019. "Revisiting Jevons's paradox of energy rebound: Policy implications and empirical evidence in consumer-oriented financial incentives from the Japanese automobile market, 2006–2016," Energy Policy, Elsevier, vol. 133(C).
    10. Bénédicte Meurisse, 2015. "On the relevance of differentiated car purchase taxes in light of the rebound effect," Working Papers 1512, Chaire Economie du climat.
    11. Hongxia Sun & Yao Wan & Huirong Lv, 2020. "System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market," Sustainability, MDPI, Open Access Journal, vol. 12(4), pages 1-1, February.
    12. Catalani, Mauro, 2009. "Ship scheduling and routing optimization. An application to Western Mediterranean area," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 42, pages 67-82.
    13. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    14. Fan, Ruguo & Dong, Lili, 2018. "The dynamic analysis and simulation of government subsidy strategies in low-carbon diffusion considering the behavior of heterogeneous agents," Energy Policy, Elsevier, vol. 117(C), pages 252-262.
    15. Steve Harris & Jan Weinzettel & Gregor Levin, 2020. "Implications of Low Carbon City Sustainability Strategies for 2050," Sustainability, MDPI, Open Access Journal, vol. 12(13), pages 1-1, July.
    16. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    18. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    19. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    20. Jane Jing Xu & Tsz Leung Yip, 2012. "Ship investment at a standstill? An analysis of shipbuilding activities and policies," Applied Economics Letters, Taylor & Francis Journals, vol. 19(3), pages 269-275, February.

    More about this item

    Keywords

    ship exhaust emissions; regional economic income; sustainable ecosystem; System Dynamics; scenario simulation;
    All these keywords.

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:742-:d:97541. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.