IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6326-d649584.html
   My bibliography  Save this article

Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017

Author

Listed:
  • Fabien Muhirwa

    (Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Department of Natural Resources and Environmental Management, Protestant Institute of Arts and Social Sciences, Huye 619, Rwanda)

  • Lei Shen

    (Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 101149, China)

  • Ayman Elshkaki

    (Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 101149, China)

  • Kgosietsile Velempini

    (Environmental Education Unit, Faculty of Education, University of Botswana, Gaborone 45685, Botswana)

  • Hubert Hirwa

    (University of Chinese Academy of Sciences, Beijing 100049, China
    State Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Sciences, Beijing 100101, China)

  • Shuai Zhong

    (Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 101149, China)

  • Aderiana Mutheu Mbandi

    (Department of Mechanical Engineering, School of Engineering and Technology, South Eastern Kenya University, Kitui 170-90200, Kenya)

Abstract

Decoupling energy, water, and food (EWF) consumption and production from GHG emissions could be an important strategy for achieving the UN Sustainable Development Goals (SDGs), especially SDG 2 (Zero Hunger), SDG 6 (Clean Water and Sanitation), and SDG 7 (Clean and Affordable Energy) in Africa. This study applies Tapio’s decoupling method to analyze the relationship between GHG emissions and EWF resources use in 15 African countries over the period 1990–2017. The results show a remarkable relationship, which includes the contamination of EWF by GHG emissions, that mostly exhibits unsatisfactory decoupling state to satisfactory decoupling over a period of several years. The decoupling of water and energy resources from GHG emissions in most countries of Africa has not been able to reach an excellent decoupling state or a strong positive decoupling state. This requires countries in Africa to support environmentally friendly water and energy infrastructures and to promote an integrated, mutually managed, whole resource interaction system. The study also highlights the importance of tracking sources of GHG emissions, whether within individual resource sector activities or across resources to each other.

Suggested Citation

  • Fabien Muhirwa & Lei Shen & Ayman Elshkaki & Kgosietsile Velempini & Hubert Hirwa & Shuai Zhong & Aderiana Mutheu Mbandi, 2021. "Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017," Energies, MDPI, vol. 14(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6326-:d:649584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Shamseddin Musa, 2020. "Impacts of drought, food security policy and climate change on performance of irrigation schemes in Sub-saharan Africa: The case of Sudan," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Kebede, Ellene & Kagochi, John & Jolly, Curtis M., 2010. "Energy consumption and economic development in Sub-Sahara Africa," Energy Economics, Elsevier, vol. 32(3), pages 532-537, May.
    3. Hubert Hirwa & Qiuying Zhang & Yunfeng Qiao & Yu Peng & Peifang Leng & Chao Tian & Sayidjakhon Khasanov & Fadong Li & Alphonse Kayiranga & Fabien Muhirwa & Auguste Cesar Itangishaka & Gabriel Habiyare, 2021. "Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    4. Michael Martin & Lina Danielsson, 2016. "Environmental Implications of Dynamic Policies on Food Consumption and Waste Handling in the European Union," Sustainability, MDPI, vol. 8(3), pages 1-15, March.
    5. Adom, Philip Kofi & Agradi, Mawunyo Prosper & Bekoe, William, 2019. "Electricity supply in Ghana: The implications of climate-induced distortions in the water-energy equilibrium and system losses," Renewable Energy, Elsevier, vol. 134(C), pages 1114-1128.
    6. Mpandeli, S. & Naidoo, D. & Mabhaudhi, T. & Nhemachena, Charles & Nhamo, Luxon & Liphadzi, S. & Hlahla, S. & Modi, A. T., "undated". "Climate change adaptation through the water-energy-food nexus in southern Africa," Papers published in Journals (Open Access) H048960, International Water Management Institute.
    7. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    8. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2012. "Energy consumption, economic growth and CO2 emissions in Middle East and North African countries," Energy Policy, Elsevier, vol. 45(C), pages 342-349.
    9. Li, J.S. & Chen, G.Q., 2013. "Energy and greenhouse gas emissions review for Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 23-32.
    10. Diego Pereira Lindoso & Flávio Eiró & Marcel Bursztyn & Saulo Rodrigues-Filho & Stephanie Nasuti, 2018. "Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    11. Vivien Foster & Daron Bedrosyan, 2014. "Understanding CO2 Emissions from the Global Energy Sector," World Bank Publications - Reports 17143, The World Bank Group.
    12. Oyedepo, Sunday Olayinka, 2012. "On energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2583-2598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayman Elshkaki & Lei Shen, 2022. "Energy Transition towards Carbon Neutrality," Energies, MDPI, vol. 15(14), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    2. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    3. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    4. Marcel Mbamalu, 2020. "Newspaper Coverage of Renewable Energy in Nigeria: Frames, Themes, and Actors," SAGE Open, , vol. 10(2), pages 21582440209, May.
    5. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    6. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    7. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Fahad Asmi & Rizwanullah Muhammad, 2022. "CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 18-31, January.
    8. Kingsley Appiah & Jianguo Du & Michael Yeboah & Rhoda Appiah, 2019. "Causal relationship between Industrialization, Energy Intensity, Economic Growth and Carbon dioxide emissions: recent evidence from Uganda," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 237-245.
    9. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    10. Xue, Jin, 2014. "Is eco-village/urban village the future of a degrowth society? An urban planner's perspective," Ecological Economics, Elsevier, vol. 105(C), pages 130-138.
    11. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    12. Agboola, Mary Oluwatoyin & Bekun, Festus Victor & Joshua, Udi, 2021. "Pathway to environmental sustainability: Nexus between economic growth, energy consumption, CO2 emission, oil rent and total natural resources rent in Saudi Arabia," Resources Policy, Elsevier, vol. 74(C).
    13. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    14. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    16. Gopal Gopakumar & Ritika Jaiswal & Mayank Parashar, 2022. "Analysis of the Existence of Environmental Kuznets Curve: Evidence from India," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 177-187.
    17. Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2014. "Beyond ‘predict and provide’: UK transport, the growth paradigm and climate change," Transport Policy, Elsevier, vol. 32(C), pages 139-147.
    18. Oktay KIZILKAYA, 2017. "The Impact of Economic Growth and Foreign Direct Investment on CO2 Emissions: The Case of Turkey," Turkish Economic Review, KSP Journals, vol. 4(1), pages 106-118, March.
    19. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    20. Garba, Ifeoluwa & Bellingham, Richard, 2021. "Energy poverty: Estimating the impact of solid cooking fuels on GDP per capita in developing countries - Case of sub-Saharan Africa," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6326-:d:649584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.