IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5962-d445456.html
   My bibliography  Save this article

Benchmarking Sustainable Manufacturing: A DEA-Based Method and Application

Author

Listed:
  • Jun-Der Leu

    (Department of Business Administration, National Central University, Taoyuan City 32001, Taiwan)

  • Wen-Hsien Tsai

    (Department of Business Administration, National Central University, Taoyuan City 32001, Taiwan)

  • Mei-Niang Fan

    (Department of Business Administration, National Central University, Taoyuan City 32001, Taiwan)

  • Sophia Chuang

    (Department of Business Administration, National Central University, Taoyuan City 32001, Taiwan)

Abstract

In past decades, many manufacturing enterprises have followed the business model of productivity maximization, in which achieving maximum profit using limited resources is the business goal. Although this industrial strategy may make profit, it can be detrimental to the long-term social welfare. Industrial regulations require that enterprise should be responsible for the natural environment and the health of their employees while achieving their business goals. This presents a complex problem involving the trade-off between ecology and economy so that an efficient strategic decision support method is needed. Since the value-added process of a manufacturing company encompasses both desirable and undesirable outputs, in this study we use a data envelopment analysis-based model to measure performance sustainability. In it, energy, water, and manpower are considered as input resources, meanwhile CO 2 emissions, wasted water, chemical compounds, and laborers’ injuries are considered as bad outputs. The proposed approach is applied to a global chemical manufacturing company to benchmark the sustainability of its production sites located in Asia. Based on the benchmarking results, the theoretical and practical implications are discussed.

Suggested Citation

  • Jun-Der Leu & Wen-Hsien Tsai & Mei-Niang Fan & Sophia Chuang, 2020. "Benchmarking Sustainable Manufacturing: A DEA-Based Method and Application," Energies, MDPI, vol. 13(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5962-:d:445456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eckard Helmers & Johannes Dietz & Martin Weiss, 2020. "Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions," Sustainability, MDPI, vol. 12(3), pages 1-31, February.
    2. Oggioni, G. & Riccardi, R. & Toninelli, R., 2011. "Eco-efficiency of the world cement industry: A data envelopment analysis," Energy Policy, Elsevier, vol. 39(5), pages 2842-2854, May.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Fengyi Lin & Sheng-Wei Lin & Wen-Min Lu, 2018. "Sustainability Assessment of Taiwan’s Semiconductor Industry: A New Hybrid Model Using Combined Analytic Hierarchy Process and Two-Stage Additive Network Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 684-693, May.
    6. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    7. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    8. Toly Chen, 2016. "Competitive and Sustainable Manufacturing in the Age of Globalization," Sustainability, MDPI, vol. 9(1), pages 1-5, December.
    9. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    10. Gavronski, Iuri & Klassen, Robert D. & Vachon, Stephan & Nascimento, Luis Felipe Machado do, 2011. "A resource-based view of green supply management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 872-885.
    11. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    12. Hua, Zhongsheng & Bian, Yiwen & Liang, Liang, 2007. "Eco-efficiency analysis of paper mills along the Huai River: An extended DEA approach," Omega, Elsevier, vol. 35(5), pages 578-587, October.
    13. Milan Zeleny, 2010. "Strategy as Action: From Porter to Anti-Porter," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 1(1), pages 1-22, January.
    14. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    15. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    16. Sudarto, Sumarsono & Takahashi, Katsuhiko & Morikawa, Katsumi, 2017. "Efficient flexible long-term capacity planning for optimal sustainability dimensions performance of reverse logistics social responsibility: A system dynamics approach," International Journal of Production Economics, Elsevier, vol. 184(C), pages 179-192.
    17. Chongfeng Ren & Ruihuan Li & Ping Guo, 2016. "Two-Stage DEA Analysis of Water Resource Use Efficiency," Sustainability, MDPI, vol. 9(1), pages 1-17, December.
    18. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    19. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach," Energy, Elsevier, vol. 36(5), pages 2765-2772.
    20. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    21. Thomas C. Powell, 1995. "Total quality management as competitive advantage: A review and empirical study," Strategic Management Journal, Wiley Blackwell, vol. 16(1), pages 15-37.
    22. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    23. Hossam A. Kishawy & Hussien Hegab & Elsadig Saad, 2018. "Design for Sustainable Manufacturing: Approach, Implementation, and Assessment," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    24. Sudarto, Sumarsono & Takahashi, Katsuhiko & Morikawa, Katsumi, 2017. "Reprint "Efficient flexible long-term capacity planning for optimal sustainability dimensions performance of reverse logistics social responsibility: A system dynamics approach"," International Journal of Production Economics, Elsevier, vol. 190(C), pages 45-59.
    25. Yanzhen Li & Rapinder S. Sawhne & Joseph H. Wilck, 2013. "Applying Bayesian Network Techniques to Prioritize Lean Six Sigma Efforts," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 4(2), pages 1-15, April.
    26. Zhu, Qinghua & Sarkis, Joseph & Lai, Kee-hung, 2008. "Confirmation of a measurement model for green supply chain management practices implementation," International Journal of Production Economics, Elsevier, vol. 111(2), pages 261-273, February.
    27. García-Rodríguez, Francisco J. & Castilla-Gutiérrez, Carlos & Bustos-Flores, Carlos, 2013. "Implementation of reverse logistics as a sustainable tool for raw material purchasing in developing countries: The case of Venezuela," International Journal of Production Economics, Elsevier, vol. 141(2), pages 582-592.
    28. Ewa Chodakowska & Joanicjusz Nazarko, 2020. "Assessing the Performance of Sustainable Development Goals of EU Countries: Hard and Soft Data Integration," Energies, MDPI, vol. 13(13), pages 1-26, July.
    29. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    30. Mette Asmild & Joseph Paradi & Vanita Aggarwall & Claire Schaffnit, 2004. "Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry," Journal of Productivity Analysis, Springer, vol. 21(1), pages 67-89, January.
    31. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    32. Haibo Zhou & Hanhui Hu, 2017. "Sustainability Evaluation of Railways in China Using a Two-Stage Network DEA Model with Undesirable Outputs and Shared Resources," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    33. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    34. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Nowakowski & Dariusz Porębski, 2022. "Application of the DEA Method for Evaluation of Information Usefulness Efficiency on Websites," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    2. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    3. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    4. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    5. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    6. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    7. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    8. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    9. Farzad Zaare Tajabadi & Sahand Daneshvar, 2023. "Benchmark Approach for Efficiency Improvement in Green Supply Chain Management with DEA Models," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    10. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    11. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    12. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    13. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    14. Falavigna, G. & Ippoliti, R., 2020. "The socio-economic planning of a community nurses programme in mountain areas: A Directional Distance Function approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    15. Fang, Hong & Wu, Junjie & Zeng, Catherine, 2009. "Comparative study on efficiency performance of listed coal mining companies in China and the US," Energy Policy, Elsevier, vol. 37(12), pages 5140-5148, December.
    16. Sarmento, Joaquim Miranda & Renneboog, Luc & Verga-Matos, Pedro, 2017. "Measuring highway efficiency : A DEA approach and the Malquist index," Other publications TiSEM 23264815-321e-45a3-83ee-9, Tilburg University, School of Economics and Management.
    17. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    18. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    19. Zheng, Saina & Lam, Chor-Man & Hsu, Shu-Chien & Ren, Jingzheng, 2018. "Evaluating efficiency of energy conservation measures in energy service companies in China," Energy Policy, Elsevier, vol. 122(C), pages 580-591.
    20. Zurano-Cervelló, Patricia & Pozo, Carlos & Mateo-Sanz, Josep María & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2019. "Sustainability efficiency assessment of the electricity mix of the 28 EU member countries combining data envelopment analysis and optimized projections," Energy Policy, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5962-:d:445456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.