IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4614-d294315.html
   My bibliography  Save this article

Operational Aspects of Electric Vehicles from Car-Sharing Systems

Author

Listed:
  • Katarzyna Turoń

    (Department of Automotive Vehicle Construction, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasińskiego Street, 40-019 Katowice, Poland)

  • Andrzej Kubik

    (Department of Automotive Vehicle Maintenance, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasińskiego Street, 40-019 Katowice, Poland)

  • Feng Chen

    (School of Mechanical Engineering, Shanghai JiaoTong University, No. 800 Dongchuan Road Minhang Campus, Shanghai Jiao Tong University, 200240 Shanghai, China)

Abstract

The article was dedicated to the topic of energy consumption of driving cars equipped with an electric motor. Due to the emerging demands for the excessive use of energy by vehicles (including car-sharing system vehicles), the authors carried out research to determine factors that affect the energy consumption. Due to the occurrence of a research gap related to the lack of reliable scientific information regarding real electricity consumption by vehicles used in car-sharing systems, the authors attempted to determine these values based on the proposed research experiment. The purpose of the research was to identify factors that increase energy consumption while driving in the case of car-sharing systems and developing recommendations for users of car-sharing systems and system operators in relation to energy consumption. Based on data received from car-sharing system operators and to their demands that users move cars uneconomically and use too much energy, the authors performed a scientific experiment based on Hartley’s plan. The authors made journeys with electric cars from car-sharing (measurements) in order to compare real consumption with data obtained from operators. As a result, the authors developed a list of factors that negatively affect the energy consumption of electric vehicles from car-sharing systems. As conclusion, a number of recommendations were developed for car-sharing system operators on how to manage their systems to reduce excessive energy consumption in electric vehicles.

Suggested Citation

  • Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2019. "Operational Aspects of Electric Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4614-:d:294315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    2. Susan Shaheen & Nelson Chan & Helen Micheaux, 2015. "One-way carsharing’s evolution and operator perspectives from the Americas," Transportation, Springer, vol. 42(3), pages 519-536, May.
    3. Nathalie Ortar & Marianne Ryghaug, 2019. "Should All Cars Be Electric by 2025? The Electric Car Debate in Europe," Sustainability, MDPI, vol. 11(7), pages 1-16, March.
    4. Shaheen, Susan PhD & Chan, Nelson & Micheaux, Helen, 2015. "One-Way Carsharing's Evolution and Operator Perspectives from the Americas," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt83s1z8j4, Institute of Transportation Studies, UC Berkeley.
    5. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    6. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    7. Mehdi Nourinejad & Matthew Roorda, 2015. "Carsharing operations policies: a comparison between one-way and two-way systems," Transportation, Springer, vol. 42(3), pages 497-518, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Turoń, 2022. "Multi-Criteria Decision Analysis during Selection of Vehicles for Car-Sharing Services—Regular Users’ Expectations," Energies, MDPI, vol. 15(19), pages 1-15, October.
    2. Mingyang Zhang & Heyan Xu & Ning Ma & Xinglin Pan, 2022. "Intelligent Vehicle Sales Prediction Based on Online Public Opinion and Online Search Index," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    3. Yinping Li & Tianxu Jin & Li Liu & Kun Yuan, 2020. "Dynamic Performance Simulation and Stable Current Collection Analysis of a Pantograph Catenary System for Trolley Wire Overhead Electrically Actuated LHD," Energies, MDPI, vol. 13(5), pages 1-17, February.
    4. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2022. "Analysis of the Potential Management of the Low-Carbon Energy Transformation by 2050," Energies, MDPI, vol. 15(7), pages 1-29, March.
    5. Andrzej Kubik, 2022. "CO 2 Emissions of Electric Scooters Used in Shared Mobility Systems," Energies, MDPI, vol. 15(21), pages 1-12, November.
    6. Roberto Capata & Alfonso Calabria, 2022. "High-Performance Electric/Hybrid Vehicle—Environmental, Economic and Technical Assessments of Electrical Accumulators for Sustainable Mobility," Energies, MDPI, vol. 15(6), pages 1-15, March.
    7. Katarzyna Turoń & Andrzej Kubik & Feng Chen & Hualan Wang & Bogusław Łazarz, 2020. "A Holistic Approach to Electric Shared Mobility Systems Development—Modelling and Optimization Aspects," Energies, MDPI, vol. 13(21), pages 1-19, November.
    8. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2022. "What Car for Car-Sharing? Conventional, Electric, Hybrid or Hydrogen Fleet? Analysis of the Vehicle Selection Criteria for Car-Sharing Systems," Energies, MDPI, vol. 15(12), pages 1-14, June.
    9. Alfred Benedikt Brendel & Sascha Lichtenberg & Stefan Morana & Christoph Prinz & Boris M. Hillmann, 2022. "Designing a Crowd-Based Relocation System—The Case of Car-Sharing," Sustainability, MDPI, vol. 14(12), pages 1-28, June.
    10. Katarzyna Turoń, 2022. "Carsharing Vehicle Fleet Selection from the Frequent User’s Point of View," Energies, MDPI, vol. 15(17), pages 1-14, August.
    11. Rafael Fernandes Mosquim & Carlos Eduardo Keutenedjian Mady, 2022. "Performance and Efficiency Trade-Offs in Brazilian Passenger Vehicle Fleet," Energies, MDPI, vol. 15(15), pages 1-22, July.
    12. Andrzej Kubik, 2022. "The Energy Consumption of Electric Scooters Used in the Polish Shared Mobility Market," Energies, MDPI, vol. 15(21), pages 1-15, November.
    13. Andrzej Kubik & Katarzyna Turoń & Piotr Folęga & Feng Chen, 2023. "CO 2 Emissions—Evidence from Internal Combustion and Electric Engine Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 16(5), pages 1-21, February.
    14. Katarzyna Turoń, 2022. "Selection of Car Models with a Classic and Alternative Drive to the Car-Sharing Services from the System’s Rare Users Perspective," Energies, MDPI, vol. 15(19), pages 1-15, September.
    15. Veronika Harantová & Alica Kalašová & Simona Kubíková, 2021. "Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation," Sustainability, MDPI, vol. 13(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Huang, Kai & An, Kun & Correia, Gonçalo Homem de Almeida, 2020. "Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1075-1091.
    3. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    4. Terrien, Clara & Maniak, Rémi & Chen, Bo & Shaheen, Susan, 2016. "Good Practices for Advancing Urban Mobility Innovation: A Case Study of One-Way Carsharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt53z3h2gt, Institute of Transportation Studies, UC Berkeley.
    5. Circella, Giovanni & Alemi, Farzad & Tiedeman, Kate & Handy, Susan & Mokhtarian, Patricia, 2018. "The Adoption of Shared Mobility in California and Its Relationship with Other Components of Travel Behavior," Institute of Transportation Studies, Working Paper Series qt1kq5d07p, Institute of Transportation Studies, UC Davis.
    6. Weibo Li & Maria Kamargianni, 2020. "Steering short-term demand for car-sharing: a mode choice and policy impact analysis by trip distance," Transportation, Springer, vol. 47(5), pages 2233-2265, October.
    7. Stefan Illgen & Michael Höck, 2020. "Establishing car sharing services in rural areas: a simulation-based fleet operations analysis," Transportation, Springer, vol. 47(2), pages 811-826, April.
    8. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    9. Xiaowei Chen & Hongyu Zheng & Ze Wang & Xiqun Chen, 2021. "Exploring impacts of on-demand ridesplitting on mobility via real-world ridesourcing data and questionnaires," Transportation, Springer, vol. 48(4), pages 1541-1561, August.
    10. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    11. Tyndall, Justin, 2019. "Free-floating carsharing and extemporaneous public transit substitution," Research in Transportation Economics, Elsevier, vol. 74(C), pages 21-27.
    12. Maria Juschten & Timo Ohnmacht & Vu Thi Thao & Regine Gerike & Reinhard Hössinger, 2019. "Carsharing in Switzerland: identifying new markets by predicting membership based on data on supply and demand," Transportation, Springer, vol. 46(4), pages 1171-1194, August.
    13. Zhang, Mengzhu & Zhao, Pengjun & Qiao, Si, 2020. "Smartness-induced transport inequality: Privacy concern, lacking knowledge of smartphone use and unequal access to transport information," Transport Policy, Elsevier, vol. 99(C), pages 175-185.
    14. Pan, Alexandra Q. & Martin, Elliot W. & Shaheen, Susan A., 2022. "Is access enough? A spatial and demographic analysis of one-way carsharing policies and practice," Transport Policy, Elsevier, vol. 127(C), pages 103-115.
    15. Le Vine, Scott & Polak, John, 2019. "The impact of free-floating carsharing on car ownership: Early-stage findings from London," Transport Policy, Elsevier, vol. 75(C), pages 119-127.
    16. Zhang, Yu & Li, Leiming, 2022. "Research on travelers’ transportation mode choice between carsharing and private cars based on the logit dynamic evolutionary game model," Economics of Transportation, Elsevier, vol. 29(C).
    17. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    18. Reza Vosooghi & Joseph Kamel & Jakob Puchinger & Vincent Leblond & Marija Jankovic, 2019. "Robo-Taxi service fleet sizing: assessing the impact of user trust and willingness-to-use," Transportation, Springer, vol. 46(6), pages 1997-2015, December.
    19. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    20. Teng Yu & Yajun Zhang & Ai Ping Teoh & Anchao Wang & Chengliang Wang, 2023. "Factors Influencing University Students’ Behavioral Intention to Use Electric Car-Sharing Services in Guangzhou, China," SAGE Open, , vol. 13(4), pages 21582440231, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4614-:d:294315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.