IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8188-d961550.html
   My bibliography  Save this article

CO 2 Emissions of Electric Scooters Used in Shared Mobility Systems

Author

Listed:
  • Andrzej Kubik

    (Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasińskiego Street, 40-019 Katowice, Poland)

Abstract

The development of the electric mobility market in cities is becoming more and more important every year. With this development, more and more electric scooters are appearing in cities. Currently, the restrictions that result from the upcoming trends are reducing the number of vehicles powered by combustion engines in favor of vehicles equipped with electric motors. Considering the number of electric vehicles, the dominant type is an electric scooter. The aim of this article is to determine the CO 2 that is emitted into the atmosphere by using this type of vehicle. The main suppliers of this type of vehicle in cities are shared mobility systems. To recognize the research gap, consisting of the lack of CO 2 emissions of an electric scooter type vehicle, studies were carried out on the energy consumption of an electric scooter and CO 2 emissions, which were calculated based on the CO 2 emission value needed to produce a given energy value kWh. The plan of the research performed was developed on the basis of the D-optimal plan of the experiment, thanks to which the results could be saved in the form of mathematical models based on formulas.

Suggested Citation

  • Andrzej Kubik, 2022. "CO 2 Emissions of Electric Scooters Used in Shared Mobility Systems," Energies, MDPI, vol. 15(21), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8188-:d:961550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    2. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2019. "Operational Aspects of Electric Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 12(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    2. World Bank, 2012. "Air Transport and Energy Efficiency," World Bank Publications - Reports 16805, The World Bank Group.
    3. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    4. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    5. Katarzyna Turoń, 2022. "Multi-Criteria Decision Analysis during Selection of Vehicles for Car-Sharing Services—Regular Users’ Expectations," Energies, MDPI, vol. 15(19), pages 1-15, October.
    6. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    7. Ananthakrishnan, K. & Bijarniya, Jay Prakash & Sarkar, Jahar, 2021. "Energy, exergy, economic and ecological analyses of a diurnal radiative water cooler," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    9. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2018. "Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia," Energy Policy, Elsevier, vol. 120(C), pages 635-643.
    10. Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
    11. Mingyang Zhang & Heyan Xu & Ning Ma & Xinglin Pan, 2022. "Intelligent Vehicle Sales Prediction Based on Online Public Opinion and Online Search Index," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    12. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    13. Lars Sorge & Anne Neumann & Christian von Hirschhausen & Ben Wealer, 2019. "Nuclear Power, Democracy, Development, and Nuclear Warheads: Determinants for Introducing Nuclear Power," Discussion Papers of DIW Berlin 1811, DIW Berlin, German Institute for Economic Research.
    14. Barnham, Keith & Knorr, Kaspar & Mazzer, Massimo, 2013. "Benefits of photovoltaic power in supplying national electricity demand," Energy Policy, Elsevier, vol. 54(C), pages 385-390.
    15. Rajput, Pramod & Tiwari, G.N. & Sastry, O.S., 2017. "Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study," Energy, Elsevier, vol. 120(C), pages 731-739.
    16. Schneider, E. & Carlsen, B. & Tavrides, E. & van der Hoeven, C. & Phathanapirom, U., 2013. "Measures of the environmental footprint of the front end of the nuclear fuel cycle," Energy Economics, Elsevier, vol. 40(C), pages 898-910.
    17. Livia Cabernard & Stephan Pfister & Christopher Oberschelp & Stefanie Hellweg, 2022. "Growing environmental footprint of plastics driven by coal combustion," Nature Sustainability, Nature, vol. 5(2), pages 139-148, February.
    18. Islam, KM Nazmul & Sarker, Tapan & Taghizadeh-Hesary, Farhad & Atri, Anashuwa Chowdhury & Alam, Mohammad Shafiul, 2021. "Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    20. Katarzyna Turoń, 2022. "Selection of Car Models with a Classic and Alternative Drive to the Car-Sharing Services from the System’s Rare Users Perspective," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8188-:d:961550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.