IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3104-d181837.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review

Author

Listed:
  • Varun Kumar B.

    (Velammal College of Engineering and Technology, Madurai 625009, India)

  • G. Manikandan

    (Velammal College of Engineering and Technology, Madurai 625009, India)

  • P. Rajesh Kanna

    (College of Engineering and Computing, Alghurair University, Dubai 37374, UAE)

  • Dawid Taler

    (Faculty of Environmental Engineering, Cracow University of Technology, 31-864 Cracow, Poland)

  • Jan Taler

    (Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Cracow University of Technology, 31-864 Cracow, Poland)

  • Marzena Nowak-Ocłoń

    (Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Cracow University of Technology, 31-864 Cracow, Poland)

  • Karol Mzyk

    (Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Cracow University of Technology, 31-864 Cracow, Poland)

  • Hoong Thiam Toh

    (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia International Campus, JalanSemarak, Kuala Lumpu 54100, Malaysia)

Abstract

In this paper, the effect of various shapes of ribs used in Solar Air Heaters (SAHs) was discussed. The review is concentrated on the geometry of the rib and its location on the SAH panel. Both numerical and experimental works were considered for discussion with dry air and Nano fluids as a working fluid. The influence of various shapes, such as an L shape, W shape, V shape, Multiple V shape, V shape with a gap, detachable & attachable ribs etc., was analyzed. The common fact observed from this analysis is that the implementation of artificial roughness in the absorber plate results in a considerable increase in the rate of heat transfer. Further, it is observed that ‘Multiple V-shaped with open between the ribs’ results in the maximum thermal enhancement when compared to the other shapes.

Suggested Citation

  • Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3104-:d:181837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamid, Mohammed O.A. & Zhang, Bo, 2015. "Field synergy analysis for turbulent heat transfer on ribs roughened solar air heater," Renewable Energy, Elsevier, vol. 83(C), pages 1007-1019.
    2. Varun, & Patnaik, Amar & Saini, R.P. & Singal, S.K. & Siddhartha,, 2009. "Performance prediction of solar air heater having roughened duct provided with transverse and inclined ribs as artificial roughness," Renewable Energy, Elsevier, vol. 34(12), pages 2914-2922.
    3. Luo, Lei & Wen, Fengbo & Wang, Lei & Sundén, Bengt & Wang, Songtao, 2016. "Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger," Applied Energy, Elsevier, vol. 183(C), pages 1317-1332.
    4. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    5. Varun, & Saini, R.P. & Singal, S.K., 2008. "Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate," Renewable Energy, Elsevier, vol. 33(6), pages 1398-1405.
    6. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    7. Karwa, Rajendra & Solanki, S.C & Saini, J.S, 2001. "Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates," Energy, Elsevier, vol. 26(2), pages 161-176.
    8. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater," Applied Energy, Elsevier, vol. 97(C), pages 907-912.
    9. Chaube, Alok & Sahoo, P.K. & Solanki, S.C., 2006. "Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater," Renewable Energy, Elsevier, vol. 31(3), pages 317-331.
    10. Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
    11. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    12. Tanda, Giovanni, 2011. "Performance of solar air heater ducts with different types of ribs on the absorber plate," Energy, Elsevier, vol. 36(11), pages 6651-6660.
    13. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    14. Rajaseenivasan, T. & Srinivasan, S. & Srithar, K., 2015. "Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate," Energy, Elsevier, vol. 88(C), pages 863-873.
    15. Ravi, Ravi Kant & Saini, R.P., 2016. "Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs," Energy, Elsevier, vol. 116(P1), pages 507-516.
    16. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    17. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Taler & Paweł Ocłoń & Marcin Trojan & Abdulmajeed Mohamad, 2019. "Selected Papers from the XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)," Energies, MDPI, vol. 12(12), pages 1-3, June.
    2. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    3. Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
    4. António Araújo, 2020. "Thermo-Hydraulic Performance of Solar Air Collectors with Artificially Roughened Absorbers: A Comparative Review of Semi-Empirical Models," Energies, MDPI, vol. 13(14), pages 1-33, July.
    5. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater having Transverse Triangular Block at the Bottom of Air Duct," Energies, MDPI, vol. 13(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    2. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    3. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    4. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    5. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    6. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    7. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    8. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    9. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
    10. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    11. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    12. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    13. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
    14. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).
    15. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    16. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    17. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    18. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    19. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B. & Chamoli, Sunil, 2016. "A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 550-605.
    20. Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3104-:d:181837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.