IDEAS home Printed from
   My bibliography  Save this article

Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs


  • Ravi, Ravi Kant
  • Saini, R.P.


Double pass solar air heater (DPSAH) provided with roughness on each side of the absorbing surface is considered as a significant and interesting design advancement that has been used to enhance the performance of the collector. In this paper an experimental analysis has been conducted to study the effect of roughness parameters on thermohydraulic performance of double pass duct having discrete multi V shaped and staggered rib. The study has involved the values of Reynolds number (Re) from 2000 to 20000 and relative staggered rib size (r/e) from 1 to 2.5. Other parameters like relative staggered rib position (P′/P) of 0.2, angle of attack (α) of 60°, relative gap distance (Gd/Lv) of 0.70, relative pitch ratio (p/e) of 10, relative roughness height (e/D) of 0.043 and relative gap width (g/e) of 1.0 are kept constant. Based on the study, heat transfer and pressure drop in single and double pass mode have been estimated at range of ribs and performance parameters and results are compared with smooth ducts under same operating conditions. It has been found that the roughness geometry used on each side of the plate in double pass mode enhances both frictional losses as well as heat dissipation rate.

Suggested Citation

  • Ravi, Ravi Kant & Saini, R.P., 2016. "Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs," Energy, Elsevier, vol. 116(P1), pages 507-516.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:507-516
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Prasad, K. & Mullick, S. C., 1983. "Heat transfer characteristics of a solar air heater used for drying purposes," Applied Energy, Elsevier, vol. 13(2), pages 83-93, February.
    2. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    3. Karim, Md Azharul & Hawlader, M.N.A, 2006. "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, Elsevier, vol. 31(4), pages 452-470.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hassan, Hamdy & Abo-Elfadl, Saleh, 2018. "Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate," Renewable Energy, Elsevier, vol. 116(PA), pages 728-740.
    2. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-20, November.
    3. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    4. Tarek Kh. Abdelkader & Qizhou Fan & Eid S. Gaballah & Shaowei Wang & Yanlin Zhang, 2020. "Energy and Exergy Analysis of a Flat-Plate Solar Air Heater Artificially Roughened and Coated with a Novel Solar Selective Coating," Energies, MDPI, Open Access Journal, vol. 13(4), pages 1-17, February.
    5. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    6. Mandal, Soumya & Ghosh, Subir Kumar, 2020. "Experimental investigation of the performance of a double pass solar water heater with reflector," Renewable Energy, Elsevier, vol. 149(C), pages 631-640.
    7. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    8. Jin, Dongxu & Zuo, Jianguo & Quan, Shenglin & Xu, Shiming & Gao, Hao, 2017. "Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 127(C), pages 68-77.
    9. Hu, Jianjun & Liu, Kaitong & Guo, Meng & Zhang, Guangqiu & Chu, Zhongliang & Wang, Meida, 2019. "Performance improvement of baffle-type solar air collector based on first chamber narrowing," Renewable Energy, Elsevier, vol. 135(C), pages 701-710.
    10. Kumar, Vikash, 2019. "Nusselt number and friction factor correlations of three sides concave dimple roughened solar air heater," Renewable Energy, Elsevier, vol. 135(C), pages 355-377.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:507-516. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.