IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp509-517.html
   My bibliography  Save this article

CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib

Author

Listed:
  • Singh, Sukhmeet
  • Singh, Bikramjit
  • Hans, V.S.
  • Gill, R.S.

Abstract

A 3-dimensional CFD (computational fluid dynamics) investigation has been carried out to study the heat transfer and friction characteristics of solar air heater duct roughened with periodic transverse rib. The selected rib roughness is a new concept; it has non-uniform cross-section in the form of saw-tooth. For comparison, transverse ribs with uniform cross-section of circular, square and trapezoidal have also been investigated. The Nusselt number and friction factor have been determined for Reynolds number range of 3000–15,000. The k-ε turbulence model was selected for analysis. The non-uniform cross-section saw-tooth rib was found to result in higher Nusselt number than uniform cross-section ribs for Reynolds number above 7000 due to reduced low heat transfer area downstream of the rib caused by disruption in re-circulations. The maximum enhancement in Nusselt number for duct roughened with saw-tooth rib and trapezoidal rib was 1.78 and 1.50 respectively. The friction factor was found to be lower for saw-tooth rib as compared to uniform cross-section ribs investigated. The maximum enhancement in friction factor for duct roughened with saw-tooth and trapezoidal rib was 2.49 and 3.58 respectively.

Suggested Citation

  • Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:509-517
    DOI: 10.1016/j.energy.2015.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Sharad & Saini, R.P., 2009. "CFD based performance analysis of a solar air heater duct provided with artificial roughness," Renewable Energy, Elsevier, vol. 34(5), pages 1285-1291.
    2. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2011. "Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs," Energy, Elsevier, vol. 36(8), pages 5053-5064.
    3. Hans, Vishavjeet Singh & Saini, R.P. & Saini, J.S., 2009. "Performance of artificially roughened solar air heaters--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1854-1869, October.
    4. Kumar, Anil & Saini, R.P. & Saini, J.S., 2013. "Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness," Renewable Energy, Elsevier, vol. 58(C), pages 151-163.
    5. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    6. Chaube, Alok & Sahoo, P.K. & Solanki, S.C., 2006. "Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater," Renewable Energy, Elsevier, vol. 31(3), pages 317-331.
    7. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    8. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    9. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    10. Prasad, K. & Mullick, S. C., 1983. "Heat transfer characteristics of a solar air heater used for drying purposes," Applied Energy, Elsevier, vol. 13(2), pages 83-93, February.
    11. Bhagoria, J.L & Saini, J.S & Solanki, S.C, 2002. "Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate," Renewable Energy, Elsevier, vol. 25(3), pages 341-369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    2. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    3. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    4. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    6. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    7. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    8. Hamid, Mohammed O.A. & Zhang, Bo, 2015. "Field synergy analysis for turbulent heat transfer on ribs roughened solar air heater," Renewable Energy, Elsevier, vol. 83(C), pages 1007-1019.
    9. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Performance evaluation of solar air heater with novel hyperbolic rib geometry," Renewable Energy, Elsevier, vol. 105(C), pages 786-797.
    10. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    11. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
    12. Anil Kumar & Man-Hoe Kim, 2016. "CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct with Multi V-Shape Roughened Ribs," Energies, MDPI, vol. 9(6), pages 1-23, May.
    13. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    14. Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
    15. Dezan, Daniel J. & Rocha, André D. & Ferreira, Wallace G., 2020. "Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators," Applied Energy, Elsevier, vol. 263(C).
    16. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    17. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater having Transverse Triangular Block at the Bottom of Air Duct," Energies, MDPI, vol. 13(5), pages 1-19, March.
    18. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    19. Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
    20. Manjunath, M.S. & Karanth, K.Vasudeva & Sharma, N.Yagnesh, 2017. "Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater," Energy, Elsevier, vol. 121(C), pages 616-630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:509-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.