IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p260-d91051.html
   My bibliography  Save this article

Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China

Author

Listed:
  • Xun Zhang

    (Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Information Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
    Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Jingying Fu

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China)

  • Gang Lin

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Dong Jiang

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China)

  • Xiaoxi Yan

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China)

Abstract

Switchgrass displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the spatial distribution of switchgrass-based bioethanol production potential in China. This study created a land surface process model (Environmental Policy Integrated Climate GIS (Geographic Information System)-based (GEPIC) model) coupled with a life cycle analysis (LCA) to explore the spatial distribution of potential bioethanol production and present a comprehensive analysis of energy efficiency and environmental impacts throughout its whole life cycle. It provides a new approach to study the bioethanol productivity and potential environmental impact from marginal lands based on the high spatial resolution GIS data, and this applies not only to China, but also to other regions and to other types of energy plant. The results indicate that approximately 59 million ha of marginal land in China are suitable for planting switchgrass, and 22 million tons of ethanol can be produced from this land. Additionally, a potential net energy gain (NEG) of 1.75 x 106 million MJ will be achieved if all of the marginal land can be used in China, and Yunnan Province offers the most significant one that accounts for 35% of the total. Finally, this study obtained that the total environmental effect index of switchgrass-based bioethanol is the equivalent of a population of approximately 20,300, and a reduction in the global warming potential (GWP) is the most significant environmental impact.

Suggested Citation

  • Xun Zhang & Jingying Fu & Gang Lin & Dong Jiang & Xiaoxi Yan, 2017. "Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China," Energies, MDPI, vol. 10(2), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:260-:d:91051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Jiefeng & Gaustad, Gabrielle & Trabold, Thomas A., 2013. "Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification," Applied Energy, Elsevier, vol. 104(C), pages 936-944.
    2. Lu, Lu & Jiang, Dong & Fu, Jingying & Zhuang, Dafang & Huang, Yaohuan & Hao, Mengmeng, 2014. "Evaluating energy benefit of Pistacia chinensis based biodiesel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 258-264.
    3. Fazio, Simone & Barbanti, Lorenzo, 2014. "Energy and economic assessments of bio-energy systems based on annual and perennial crops for temperate and tropical areas," Renewable Energy, Elsevier, vol. 69(C), pages 233-241.
    4. Bansal, Ankit & Illukpitiya, Prabodh & Tegegne, Fisseha & Singh, Surendra P., 2016. "Energy efficiency of ethanol production from cellulosic feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 141-146.
    5. Zheng, Y.H. & Li, Z.F. & Feng, S.F. & Lucas, M. & Wu, G.L. & Li, Y. & Li, C.H. & Jiang, G.M., 2010. "Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3132-3139, December.
    6. Cardona Alzate, C.A. & Sánchez Toro, O.J., 2006. "Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass," Energy, Elsevier, vol. 31(13), pages 2447-2459.
    7. Shafiee, Shahriar & Topal, Erkan, 2010. "A long-term view of worldwide fossil fuel prices," Applied Energy, Elsevier, vol. 87(3), pages 988-1000, March.
    8. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    9. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    10. Bernardos, J. N. & Viglizzo, E. F. & Jouvet, V. & Lertora, F. A. & Pordomingo, A. J. & Cid, F. D., 2001. "The use of EPIC model to study the agroecological change during 93 years of farming transformation in the Argentine pampas," Agricultural Systems, Elsevier, vol. 69(3), pages 215-234, September.
    11. Jonker, J.G.G. & van der Hilst, F. & Junginger, H.M. & Cavalett, O. & Chagas, M.F. & Faaij, A.P.C., 2015. "Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies," Applied Energy, Elsevier, vol. 147(C), pages 593-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    2. Mengmeng Hao & Jingying Fu & Dong Jiang & Xiaoxi Yan & Shuai Chen & Fangyu Ding, 2018. "Sustainable Development of Sweet Sorghum-Based Fuel Ethanol from the Perspective of Water Resources in China," Sustainability, MDPI, vol. 10(10), pages 1-15, September.
    3. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    4. Xu Deng & Fei Teng & Minpeng Chen & Zhangliu Du & Bin Wang & Renqiang Li & Pan Wang, 2024. "Exploring negative emission potential of biochar to achieve carbon neutrality goal in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    6. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    7. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaiser, Thomas & Judex, Michael & Hiepe, Claudia & Kuhn, Arnim, 2010. "Regional simulation of maize production in tropical savanna fallow systems as affected by fallow availability," Agricultural Systems, Elsevier, vol. 103(9), pages 656-665, November.
    2. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    3. Dong Jiang & Shuai Chen & Mengmeng Hao & Jingying Fu & Fangyu Ding, 2018. "Assessing the Sustainable Development of Bioenergy from Cassava within “Water-Energy-Food” Nexus Framework in China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    4. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    5. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    7. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    8. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    9. Wang, Ze & Lin, Weigang & Song, Wenli & Wu, Xuexing, 2012. "Pyrolysis of the lignocellulose fermentation residue by fixed-bed micro reactor," Energy, Elsevier, vol. 43(1), pages 301-305.
    10. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    11. Calliope Panoutsou & David Chiaramonti, 2020. "Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy," Energies, MDPI, vol. 13(11), pages 1-22, May.
    12. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    13. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    14. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    15. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    16. Sheng, Meiling & Liu, Junzhi & Zhu, A-Xing & Rossiter, David G. & Zhu, Liming & Peng, Guoqiang, 2018. "Evaluation of CLM-Crop for maize growth simulation over Northeast China," Ecological Modelling, Elsevier, vol. 377(C), pages 26-34.
    17. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    18. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    20. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:260-:d:91051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.