IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v9y2021i3p34-d634996.html
   My bibliography  Save this article

Forecasting FOMC Forecasts

Author

Listed:
  • S. Yanki Kalfa

    (Rady School of Management, The University of California at San Diego, La Jolla, CA 92093, USA)

  • Jaime Marquez

    (School of Advanced International Studies, Johns Hopkins, Washington, DC 20036, USA)

Abstract

(Hendry 1980, p. 403) The three golden rules of econometrics are “test, test, and test”. The current paper applies that approach to model the forecasts of the Federal Open Market Committee over 1992–2019 and to forecast those forecasts themselves. Monetary policy is forward-looking, and as part of the FOMC’s effort toward transparency, the FOMC publishes its (forward-looking) economic projections. The overall views on the economy of the FOMC participants–as characterized by the median of their projections for inflation, unemployment, and the Fed’s policy rate–are themselves predictable by information publicly available at the time of the FOMC’s meeting. Their projections also communicate systematic behavior on the part of the FOMC’s participants.

Suggested Citation

  • S. Yanki Kalfa & Jaime Marquez, 2021. "Forecasting FOMC Forecasts," Econometrics, MDPI, vol. 9(3), pages 1-21, September.
  • Handle: RePEc:gam:jecnmx:v:9:y:2021:i:3:p:34-:d:634996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/9/3/34/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/9/3/34/
    Download Restriction: no
    ---><---

    Other versions of this item:

    • S. Yanki Kalfa & Jaime Marquez, 2018. "Forecasting FOMC Forecasts," Working Papers 2018-007, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.

    References listed on IDEAS

    as
    1. David Romer, 2010. "A New Data Set on Monetary Policy: The Economic Forecasts of Individual Members of the FOMC," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(5), pages 951-957, August.
    2. Nakazono, Yoshiyuki, 2013. "Strategic behavior of Federal Open Market Committee board members: Evidence from members’ forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 93(C), pages 62-70.
    3. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    4. Stekler, Herman & Symington, Hilary, 2016. "Evaluating qualitative forecasts: The FOMC minutes, 2006–2010," International Journal of Forecasting, Elsevier, vol. 32(2), pages 559-570.
    5. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, September.
    6. Natsuki Arai, 2016. "Evaluating the Efficiency of the FOMC's New Economic Projections," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(5), pages 1019-1049, August.
    7. Fendel, Ralf & Rülke, Jan-Christoph, 2012. "Are heterogeneous FOMC forecasts consistent with the Fed’s monetary policy?," Economics Letters, Elsevier, vol. 116(1), pages 5-7.
    8. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, vol. 5(3), pages 1-27, September.
    9. Clements, Michael P. & Hendry, David F., 1998. "Forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 14(1), pages 111-131, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas L. Hogan, 2022. "The calculus of dissent: Bias and diversity in FOMC projections," Public Choice, Springer, vol. 191(1), pages 105-135, April.
    2. Jaime Marquez, 2023. "Stylized Facts of the FOMC’s Longer-Run Forecasts," JRFM, MDPI, vol. 16(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Yanki Kalfa & Jaime Marquez, 2019. "FOMC Forecasts: Are They Useful for Understanding Monetary Policy?," JRFM, MDPI, vol. 12(3), pages 1-17, August.
    2. Hamza Bennani, 2016. "Measuring Monetary Policy Stress for Fed District Representatives," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(2), pages 156-176, May.
    3. Arai, Natsuki, 2023. "The FOMC’s new individual economic projections and macroeconomic theories," Journal of Banking & Finance, Elsevier, vol. 151(C).
    4. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    5. Ilias Filippou & James Mitchell & My T. Nguyen, 2023. "The FOMC versus the Staff: Do Policymakers Add Value in Their Tales?," Working Papers 23-20, Federal Reserve Bank of Cleveland.
    6. Jaime Marquez & S Yanki Kalfa, 2021. "The Forecasts of Individual FOMC Members: New Evidence after Ten Years," Working Papers 2021-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    7. Carola Conces Binder & Rodrigo Sekkel, 2024. "Central bank forecasting: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 38(2), pages 342-364, April.
    8. Lindh, Thomas & Malmberg, Bo, 2007. "Demographically based global income forecasts up to the year 2050," International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
    9. Hendry, David F. & Pretis, Felix, 2023. "Analysing differences between scenarios," International Journal of Forecasting, Elsevier, vol. 39(2), pages 754-771.
    10. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    11. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    12. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    13. Guido Schultefrankenfeld, 2020. "Appropriate monetary policy and forecast disagreement at the FOMC," Empirical Economics, Springer, vol. 58(1), pages 223-255, January.
    14. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
    15. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Regime Switching and Artificial Neural Network Forecasting," Working Papers 0502, University of Crete, Department of Economics.
    16. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    17. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    18. El-Shagi, Makram & Jung, Alexander, 2015. "Does the Greenspan era provide evidence on leadership in the FOMC?," Journal of Macroeconomics, Elsevier, vol. 43(C), pages 173-190.
    19. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & Georgios P. Kouretas, 2006. "Regime switching and artificial neural network forecasting of the Cyprus Stock Exchange daily returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 371-383.
    20. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2007. "Learning, Structural Instability, and Present Value Calculations," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 253-288.

    More about this item

    Keywords

    FOMC; Taylor rule; vector autoregression; inflation; unemployment; SEP;
    All these keywords.

    JEL classification:

    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:9:y:2021:i:3:p:34-:d:634996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.