IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1560-d1210501.html
   My bibliography  Save this article

A Study on the Impact of Different Cooling Methods on the Indoor Environment of Greenhouses Used for Lentinula Edodes during Summer

Author

Listed:
  • Anhui He

    (College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Xiao Wu

    (College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Xinfeng Jiang

    (College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Reyimei Maimaitituxun

    (College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Ayesha Entemark

    (College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Hongjun Xu

    (College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
    Center for Postdoctoral Studies of Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

The shitake mushroom ( lentinula edodes ) industry in the Gobi Desert region of southern Xinjiang has experienced rapid development and has reached a certain scale. To clarify the laws governing different cooling methods in greenhouses and identify suitable cooling methods for mushroom production in the Gobi Desert region, this study focused on monitoring the environmental changes in greenhouses using three different cooling methods: natural ventilation cooling, water-sprinkling roof cooling, and a fan and pad cooling system. The results showed that when combined with external shading (shade netting), natural ventilation cooling, fan and pad cooling, and water-sprinkling roof cooling, respectively, reduced the air temperature by 8.6 °C, 14.0 °C, and 15.2 °C. They also increased the relative humidity by 15.3%, 43.3%, and 51.2%, resulting in cooling efficiencies of 28.5%, 56.3%, and 68.1%, respectively. The water-sprinkling roof cooling system demonstrated the best cooling effect and temperature uniformity and had higher economic benefits. Therefore, the use of the external sprinkler cooling method in double-skeleton greenhouses is suitable for summer lentinula edodes production in the Gobi Desert region of southern Xinjiang.

Suggested Citation

  • Anhui He & Xiao Wu & Xinfeng Jiang & Reyimei Maimaitituxun & Ayesha Entemark & Hongjun Xu, 2023. "A Study on the Impact of Different Cooling Methods on the Indoor Environment of Greenhouses Used for Lentinula Edodes during Summer," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1560-:d:1210501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Franco & Diego L. Valera & Araceli Peña, 2014. "Energy Efficiency in Greenhouse Evaporative Cooling Techniques: Cooling Boxes versus Cellulose Pads," Energies, MDPI, vol. 7(3), pages 1-21, March.
    2. Ahmed M. Abdel-Ghany & Pietro Picuno & Ibrahim Al-Helal & Abdullah Alsadon & Abdullah Ibrahim & Mohamed Shady, 2015. "Radiometric Characterization, Solar and Thermal Radiation in a Greenhouse as Affected by Shading Configuration in an Arid Climate," Energies, MDPI, vol. 8(12), pages 1-10, December.
    3. El-Dessouky, Hisham T.A. & Al-Haddad, Amir A. & Al-Juwayhel, Faisal I., 1996. "Thermal and hydraulic performance of a modified two-stage evaporative cooler," Renewable Energy, Elsevier, vol. 7(2), pages 165-176.
    4. Blanke, Amelia & Rozelle, Scott & Lohmar, Bryan & Wang, Jinxia & Huang, Jikun, 2007. "Water saving technology and saving water in China," Agricultural Water Management, Elsevier, vol. 87(2), pages 139-150, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    2. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    3. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    4. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    5. Mohamed A. Rashwan & Ibrahim M. Al-Helal & Saad M. Al-Kahtani & Fahad N. Alkoaik & Adil A. Fickak & Waleed A. Almasoud & Faisal A. Alshamiry & Mansour N. Ibrahim & Ronnel B. Fulleros & Mohamed R. Shad, 2025. "Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System," Energies, MDPI, vol. 18(8), pages 1-16, April.
    6. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    7. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    8. Yan, Tingting & Wang, Jinxia & Huang, Jikun, 2015. "Urbanization, agricultural water use, and regional and national crop production in China," Ecological Modelling, Elsevier, vol. 318(C), pages 226-235.
    9. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    11. Huang, Qiuqiong & Wang, Jinxia & Li, Yumin, 2017. "Do water saving technologies save water? Empirical evidence from North China," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 1-16.
    12. Veronika Vaseková, 2022. "How do people in China perceive water? From health threat perception to environmental policy change," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 627-645, September.
    13. Alejandro López-Martínez & Diego Luis Valera-Martínez & Francisco Domingo Molina-Aiz & María de los Ángeles Moreno-Teruel & Araceli Peña-Fernández & Karlos Emmanuel Espinoza-Ramos, 2019. "Analysis of the Effect of Concentrations of Four Whitening Products in Cover Transmissivity of Mediterranean Greenhouses," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    14. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    15. Subin Mattara Chalill & Snehaunshu Chowdhury & Ramanujam Karthikeyan, 2021. "Prediction of Key Crop Growth Parameters in a Commercial Greenhouse Using CFD Simulation and Experimental Verification in a Pilot Study," Agriculture, MDPI, vol. 11(7), pages 1-23, July.
    16. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    17. Giovanni Pino & Pierluigi Toma & Cristian Rizzo & Pier Paolo Miglietta & Alessandro M. Peluso & Gianluigi Guido, 2017. "Determinants of Farmers’ Intention to Adopt Water Saving Measures: Evidence from Italy," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    18. Wang, Jinxia & Zhu, Yunyun & Sun, Tianhe & Huang, Jikun & Zhang, Lijuan & Guan, Baozhu & Huang, Qiuqiong, 2020. "Forty years of irrigation development and reform in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(01), January.
    19. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    20. Yi Xiao & Liping Fang & Keith W. Hipel, 2018. "Centralized and Decentralized Approaches to Water Demand Management," Sustainability, MDPI, vol. 10(10), pages 1-16, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1560-:d:1210501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.