IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i12p12404-13937d60186.html
   My bibliography  Save this article

Radiometric Characterization, Solar and Thermal Radiation in a Greenhouse as Affected by Shading Configuration in an Arid Climate

Author

Listed:
  • Ahmed M. Abdel-Ghany

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Pietro Picuno

    (School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, via dell’Ateneo Lucano, n.10, Potenza 85100, Italy)

  • Ibrahim Al-Helal

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Abdullah Alsadon

    (Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Abdullah Ibrahim

    (Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Mohamed Shady

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

Abstract

Shading the greenhouses is necessary in summer to reduce the solar radiation load. This however generates a considerable amount of thermal radiation heat load that needs to be removed via cooling systems. This study aimed to evaluate the effect of different shading configurations on the solar and thermal radiation in a greenhouse. Nets at four different locations were employed to shade the roof and side-walls of a polycarbonate, mechanically ventilated greenhouse. The spectral radiative properties of all these plastic materials were measured in short and long wave spectrum bands. The net solar and thermal radiations and air temperature were measured outside and inside two identical shaded and unshaded greenhouses. The results showed that external roof-shading is desirable, as it reduced the generated thermal radiation in the greenhouse by 21% and 15% during the day and night time, respectively and reduced the greenhouse air temperature during the day. The internal shading (roof and side walls) is undesirable, since it drastically increased the generated thermal radiation in the greenhouse by 147% and strongly increased the greenhouse air temperature during the day. Shading the side-walls is not recommended because it significantly reduces the transmitted solar radiation in the morning and afternoon (when the outside irradiance is low) and is useless at around noon when the outside irradiance is extremely high.

Suggested Citation

  • Ahmed M. Abdel-Ghany & Pietro Picuno & Ibrahim Al-Helal & Abdullah Alsadon & Abdullah Ibrahim & Mohamed Shady, 2015. "Radiometric Characterization, Solar and Thermal Radiation in a Greenhouse as Affected by Shading Configuration in an Arid Climate," Energies, MDPI, vol. 8(12), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12404-13937:d:60186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/12/12404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/12/12404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seok-Hyun Kim & Kyung-Ju Shin & Bo-Eun Choi & Jae-Hun Jo & Soo Cho & Young-Hum Cho, 2015. "A Study on the Variation of Heating and Cooling Load According to the Use of Horizontal Shading and Venetian Blinds in Office Buildings in Korea," Energies, MDPI, vol. 8(2), pages 1-18, February.
    2. Kuo-Tsang Huang & Kevin Fong-Rey Liu & Han-Hsi Liang, 2015. "Design and Energy Performance of a Buoyancy Driven Exterior Shading Device for Building Application in Taiwan," Energies, MDPI, vol. 8(4), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels," Energies, MDPI, vol. 12(17), pages 1-18, August.
    2. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    4. Ahmed Abdel-Ghany & Ibrahim Al-Helal & Fahad Alkoaik & Abdullah Alsadon & Mohamed Shady & Abdullah Ibrahim, 2019. "Predicting the Cooling Potential of Different Shading Methods for Greenhouses in Arid Regions," Energies, MDPI, vol. 12(24), pages 1-13, December.
    5. Anhui He & Xiao Wu & Xinfeng Jiang & Reyimei Maimaitituxun & Ayesha Entemark & Hongjun Xu, 2023. "A Study on the Impact of Different Cooling Methods on the Indoor Environment of Greenhouses Used for Lentinula Edodes during Summer," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    6. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    7. Ahmed M. Abdel-Ghany & Ibrahim M. Al-Helal & Abdullah Alsadon & Abdullah Ibrahim & Mohamed Shady, 2022. "Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions," Energies, MDPI, vol. 15(19), pages 1-12, October.
    8. Alejandro López-Martínez & Diego Luis Valera-Martínez & Francisco Domingo Molina-Aiz & María de los Ángeles Moreno-Teruel & Araceli Peña-Fernández & Karlos Emmanuel Espinoza-Ramos, 2019. "Analysis of the Effect of Concentrations of Four Whitening Products in Cover Transmissivity of Mediterranean Greenhouses," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    9. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    10. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    11. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    12. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    13. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    14. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production," Energies, MDPI, vol. 12(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    2. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels," Energies, MDPI, vol. 12(17), pages 1-18, August.
    3. Soo Cho & Seok-Hyun Kim, 2017. "Analysis of the Performance of Vacuum Glazing in Office Buildings in Korea: Simulation and Experimental Studies," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    4. Byungyun Lee, 2019. "Heating, Cooling, and Lighting Energy Demand Simulation Analysis of Kinetic Shading Devices with Automatic Dimming Control for Asian Countries," Sustainability, MDPI, vol. 11(5), pages 1-20, February.
    5. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    6. Heangwoo Lee & Janghoo Seo, 2018. "Development of Window-Mounted Air Cap Roller Module," Energies, MDPI, vol. 11(7), pages 1-14, July.
    7. Ye Liu & Wanjiang Wang & Zixiao Li & Junkang Song & Zhicheng Fang & Dongbing Pang & Yanhui Chen, 2023. "Daylighting Performance and Thermal Comfort Performance Analysis of West-Facing External Shading for School Office Buildings in Cold and Severe Cold Regions of China," Sustainability, MDPI, vol. 15(19), pages 1-27, October.
    8. Kyung-joo Cho & Dong-woo Cho, 2018. "Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method," Energies, MDPI, vol. 11(1), pages 1-17, January.
    9. Vincenzo Dovì & Antonella Battaglini, 2015. "Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 8(12), pages 1-8, November.
    10. Jin-Up Kim & Oussama A. Hadadi & Hyunjoo Kim & Jonghyeob Kim, 2018. "Development of A BIM-Based Maintenance Decision-Making Framework for the Optimization between Energy Efficiency and Investment Costs," Sustainability, MDPI, vol. 10(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12404-13937:d:60186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.