IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p963-d1133829.html
   My bibliography  Save this article

Sustainable Planning Strategy of Dairy Farming in China Based on Carbon Emission from Direct Energy Consumption

Author

Listed:
  • Xinyi Du

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Qi Wang

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Yingying Zheng

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Jinming Gui

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Songhuai Du

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Zhengxiang Shi

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

Abstract

The mechanical and electrical development in dairy farming in China increases energy-related carbon emission (CE). To support the sustainable planning strategy of the department, this study calculated the CE and the carbon emission intensity (CI) of the direct energy consumed in dairy farms from 21 provinces in China. Through four dimensions analysis including the national level, farm scale, inter-provincial distribution, and main producing area, this study illustrates the impact of the environment, production, and management on CE. The total CE of nationwide dairy farming was about 2.4 Tg CO 2 eq. in 2019, and the CIs of the 21 provinces varied from 0.009 to 0.216 kg CO 2 eq. per kg of milk. The results indicate that the management mode applied in large-scale dairy farms (500 heads and above) varies considerably due to inadequate adaptation to climate. In general, semi-arid and semi-humid regions are more suitable for dairy farming than arid and humid regions. In the main milk-producing area, the spatial aggregation effect is visible in the carbon reduction potential. The present study suggests that further steps to promote sustainability and milk productivity are embodied when the replacement of fossil fuels and the management standardization are adapted to regional characteristics.

Suggested Citation

  • Xinyi Du & Qi Wang & Yingying Zheng & Jinming Gui & Songhuai Du & Zhengxiang Shi, 2023. "Sustainable Planning Strategy of Dairy Farming in China Based on Carbon Emission from Direct Energy Consumption," Agriculture, MDPI, vol. 13(5), pages 1-15, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:963-:d:1133829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houston, Carrie & Gyamfi, Samuel & Whale, Jonathan, 2014. "Evaluation of energy efficiency and renewable energy generation opportunities for small scale dairy farms: A case study in Prince Edward Island, Canada," Renewable Energy, Elsevier, vol. 67(C), pages 20-29.
    2. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    3. Lambotte, Mathieu & De Cara, Stéphane & Brocas, Catherine & Bellassen, Valentin, 2021. "Carbon footprint and economic performance of dairy farms: The case of protected designation of origin farms in France," Agricultural Systems, Elsevier, vol. 186(C).
    4. Wanying Zhao & Christopher Choi & Lin Ru & Zhengxiang Shi & Hao Li, 2022. "Effect of Rearing Systems on Growth Performance, Lying/Standing Behavior, Morbidity, and Immunity Parameters of Pre-Weaned Dairy Calves in a Continental Zone in Winter," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    5. Sun, Lu & Liu, Wenjing & Li, Zhaoling & Cai, Bofeng & Fujii, Minoru & Luo, Xiao & Chen, Wei & Geng, Yong & Fujita, Tsuyoshi & Le, Yiping, 2021. "Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development," Applied Energy, Elsevier, vol. 284(C).
    6. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    7. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    8. Ranasinghe, Ranawalage Dona Arani Koshathaki & Korale-Gedara, Pradeepa Malkanthi & Weerasooriya, Senal Alexander, 2023. "Climate change adaptation and adaptive capacities of dairy farmers: Evidence from village tank cascade systems in Sri Lanka," Agricultural Systems, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenyang Liu & Xiuyi Shi & Cuixia Li, 2023. "Digital Technology, Factor Allocation and Environmental Efficiency of Dairy Farms in China: Based on Carbon Emission Constraint Perspective," Sustainability, MDPI, vol. 15(21), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maammeur, H. & Hamidat, A. & Loukarfi, L. & Missoum, M. & Abdeladim, K. & Nacer, T., 2017. "Performance investigation of grid-connected PV systems for family farms: case study of North-West of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1208-1220.
    2. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    3. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    4. Bellassen Valentin & Drut Marion & Diallo Abdoul & Antonioli Federico & Donati Michele & Brečić Ružica & Ferrer-Pérez Hugo & Gauvrit Lisa & Hoang Viet & Nguyen An & Knutsen Steinnes Kamilla & Vittersø, 2021. "The Carbon and Land Footprint of Certified Food Products," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 113-126, December.
    5. Hua, Jian & Shiu, Hong-Gwo, 2018. "Sustainable development of renewable energy on Wangan Island, Taiwan," Utilities Policy, Elsevier, vol. 55(C), pages 200-208.
    6. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    7. Edwin, M. & Sekhar, S. Joseph, 2015. "Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies," Energy, Elsevier, vol. 91(C), pages 842-851.
    8. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    9. Timsina, Jagadish & Weerahewa, Jeevika, 2023. "Restoring ancient irrigation systems for sustainable agro-ecosystems development: Reflections on the special issue," Agricultural Systems, Elsevier, vol. 209(C).
    10. Chrysanthos Maraveas & Eleni Simeonaki & Dimitrios Loukatos & Konstantinos G. Arvanitis & Thomas Bartzanas & Marianna I. Kotzabasaki, 2023. "Livestock Agriculture Greenhouse Gases for Electricity Production: Recent Developments and Future Perspectives," Energies, MDPI, vol. 16(9), pages 1-49, May.
    11. David Pérez-Neira & Marta Soler-Montiel & Rosario Gutiérrez-Peña & Yolanda Mena-Guerrero, 2018. "Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics Perspective. A Case Study in Andalusia (Spain)," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    12. Theresa Theunissen & Julia Keller & Heinz Bernhardt, 2023. "Mind the Market Opportunity: Digital Energy Management Services for German Dairy Farmers," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    13. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
    14. Danqi Luo & Gang Xu & Jiao Luo & Xia Cui & Shengping Shang & Haiyan Qian, 2022. "Integrated Carbon Footprint and Economic Performance of Five Types of Dominant Cropping Systems in China’s Semiarid Zone," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    15. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    16. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "The digital and sustainable transition of the agri-food sector," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    17. Matteo Vittuari & Fabio De Menna & Marco Pagani, 2016. "The Hidden Burden of Food Waste: The Double Energy Waste in Italy," Energies, MDPI, vol. 9(8), pages 1-24, August.
    18. Kun Mo LEE & Min Hyeok LEE, 2021. "Uncertainty of the Electricity Emission Factor Incorporating the Uncertainty of the Fuel Emission Factors," Energies, MDPI, vol. 14(18), pages 1-14, September.
    19. Bicer, Yusuf & Dincer, Ibrahim, 2016. "Analysis and performance evaluation of a renewable energy based multigeneration system," Energy, Elsevier, vol. 94(C), pages 623-632.
    20. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:963-:d:1133829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.