IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4809-d263660.html
   My bibliography  Save this article

The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand

Author

Listed:
  • Hafiz Muhammad Abrar Ilyas

    (Department of Land Management and Systems, Lincoln University, Lincoln 7647, New Zealand)

  • Majeed Safa

    (Department of Land Management and Systems, Lincoln University, Lincoln 7647, New Zealand)

  • Alison Bailey

    (Department of Land Management and Systems, Lincoln University, Lincoln 7647, New Zealand)

  • Sara Rauf

    (Department of Land Management and Systems, Lincoln University, Lincoln 7647, New Zealand)

  • Marvin Pangborn

    (Alderbrook Farm Ltd., Rakaia 7783, New Zealand)

Abstract

Dairy farming is constantly evolving to more intensive systems of management, which involve more consumption of energy inputs. The consumption of these energy inputs in dairy farming contributes to climate change both with on-farm emissions from the combustion of fossil fuels, and by off-farm emissions due to production of farm inputs (such as fertilizer, feed supplements). The main purpose of this research study was to evaluate energy-related carbon dioxide emissions, the carbon footprint, of pastoral and barn dairy systems located in Canterbury, New Zealand. The carbon footprints were estimated based on direct and indirect energy sources. The study results showed that, on average, the carbon footprints of pastoral and barn dairy systems were 2857 kgCO 2 ha −1 and 3379 kgCO 2 ha −1 , respectively. For the production of one tonne of milk solids, the carbon footprint was 1920 kgCO 2 tMS −1 and 2129 kgCO 2 tMS −1 , respectively. The carbon emission difference between the two systems indicates that the barn system has 18% and 11% higher carbon footprint than the pastoral system, both per hectare of farm area and per tonne of milk solids, respectively. The greater carbon footprint of the barn system was due to more use of imported feed supplements, machinery usage and fossil fuel (diesel and petrol) consumption for on-farm activities.

Suggested Citation

  • Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4809-:d:263660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
    2. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    3. Flysjö, Anna & Henriksson, Maria & Cederberg, Christel & Ledgard, Stewart & Englund, Jan-Eric, 2011. "The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden," Agricultural Systems, Elsevier, vol. 104(6), pages 459-469, July.
    4. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    5. Safa, M. & Samarasinghe, S., 2011. "Determination and modelling of energy consumption in wheat production using neural networks: “A case study in Canterbury province, New Zealand”," Energy, Elsevier, vol. 36(8), pages 5140-5147.
    6. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    7. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    8. O’Brien, Donal & Shalloo, Laurence & Patton, Joe & Buckley, Frank & Grainger, Chris & Wallace, Michael, 2012. "A life cycle assessment of seasonal grass-based and confinement dairy farms," Agricultural Systems, Elsevier, vol. 107(C), pages 33-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Azeem Khan, 2020. "Energy Efficiency Outlook of New Zealand Dairy Farming Systems: An Application of Data Envelopment Analysis (DEA) Approach," Energies, MDPI, vol. 13(1), pages 1-14, January.
    2. Sara Martinez & Jose Luis Gabriel & Sergio Alvarez & Anibal Capuano & Maria del Mar Delgado, 2021. "Integral Assessment of Organic Fertilization on a Camelina sativa Rotation under Mediterranean Conditions," Agriculture, MDPI, vol. 11(4), pages 1-18, April.
    3. Chenyang Liu & Xinyao Wang & Ziming Bai & Hongye Wang & Cuixia Li, 2023. "Does Digital Technology Application Promote Carbon Emission Efficiency in Dairy Farms? Evidence from China," Agriculture, MDPI, vol. 13(4), pages 1-23, April.
    4. Kun Mo LEE & Min Hyeok LEE, 2021. "Uncertainty of the Electricity Emission Factor Incorporating the Uncertainty of the Fuel Emission Factors," Energies, MDPI, vol. 14(18), pages 1-14, September.
    5. Xinyi Du & Qi Wang & Yingying Zheng & Jinming Gui & Songhuai Du & Zhengxiang Shi, 2023. "Sustainable Planning Strategy of Dairy Farming in China Based on Carbon Emission from Direct Energy Consumption," Agriculture, MDPI, vol. 13(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    2. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    3. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.
    4. Belflower, Jeff B. & Bernard, John K. & Gattie, David K. & Hancock, Dennis W. & Risse, Lawrence M. & Alan Rotz, C., 2012. "A case study of the potential environmental impacts of different dairy production systems in Georgia," Agricultural Systems, Elsevier, vol. 108(C), pages 84-93.
    5. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    6. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
    7. Hauke F. Deeken & Alexandra Lengling & Manuel S. Krommweh & Wolfgang Büscher, 2023. "Improvement of Piglet Rearing’s Energy Efficiency and Sustainability Using Air-to-Air Heat Exchangers—A Two-Year Case Study," Energies, MDPI, vol. 16(4), pages 1-30, February.
    8. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    9. Anna Kuczuk & Janusz Pospolita, 2020. "Sustainable Agriculture – Energy and Emergy Aspects of Agricultural Production," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1000-1018.
    10. O’Brien, Donal & Shalloo, Laurence & Patton, Joe & Buckley, Frank & Grainger, Chris & Wallace, Michael, 2012. "A life cycle assessment of seasonal grass-based and confinement dairy farms," Agricultural Systems, Elsevier, vol. 107(C), pages 33-46.
    11. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    12. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    13. White, Robin R., 2016. "Increasing energy and protein use efficiency improves opportunities to decrease land use, water use, and greenhouse gas emissions from dairy production," Agricultural Systems, Elsevier, vol. 146(C), pages 20-29.
    14. Chun-Youl Baek & Kyu-Hyun Park & Kiyotaka Tahara & Yoon-Young Chun, 2017. "Data Quality Assessment of the Uncertainty Analysis Applied to the Greenhouse Gas Emissions of a Dairy Cow System," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    15. Lucio Cecchini & Biancamaria Torquati & Chiara Paffarini & Marco Barbanera & Daniele Foschini & Massimo Chiorri, 2016. "The Milk Supply Chain in Italy’s Umbria Region: Environmental and Economic Sustainability," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
    16. Guyader, Jessie & Little, Shannan & Kröbel, Roland & Benchaar, Chaouki & Beauchemin, Karen A., 2017. "Comparison of greenhouse gas emissions from corn- and barley-based dairy production systems in Eastern Canada," Agricultural Systems, Elsevier, vol. 152(C), pages 38-46.
    17. Honorata Sierocka & Maciej Zajkowski & Grzegorz Hołdyński & Zbigniew Sołjan, 2023. "Characteristics of Electricity Consumption on the Example of Poultry Farming in Poland," Energies, MDPI, vol. 16(1), pages 1-17, January.
    18. Sabia, Emilio & Napolitano, Fabio & Claps, Salvatore & De Rosa, Giuseppe & Barile, Vittoria Lucia & Braghieri, Ada & Pacelli, Corrado, 2018. "Environmental impact of dairy buffalo heifers kept on pasture or in confinement," Agricultural Systems, Elsevier, vol. 159(C), pages 42-49.
    19. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Reiner Doluschitz, 2018. "Factors Affecting Global versus Local Environmental and Economic Performance of Dairying: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 10(8), pages 1-21, August.
    20. Huang, Wei, 2022. "Demand for plant-based milk and effects of a carbon tax on fresh milk consumption in Sweden," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 518-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4809-:d:263660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.