IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3658-d175291.html
   My bibliography  Save this article

Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal

Author

Listed:
  • Tiago G. Morais

    (MARETEC—Marine, Environment and Technology Centre, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Ricardo F. M. Teixeira

    (MARETEC—Marine, Environment and Technology Centre, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Nuno R. Rodrigues

    (Terraprima—Serviços Ambientais, Sociedade Unipessoal, Lda., 2135-199 Samora Correia, Portugal)

  • Tiago Domingos

    (MARETEC—Marine, Environment and Technology Centre, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

Abstract

The dairy sector is a major contributor to greenhouse gas emissions. Pasture-based dairy production is sometimes credited as environmentally friendlier but is less studied than more intensive production systems. Here we characterize and calculate the carbon footprint (CF), using life cycle assessment, of the “Vacas Felizes” pasture-based milk production system, in the Azores archipelago. Impacts were determined for multiple functional units: mass, energy and nutritional content, farm, area and animal. We performed multivariate analysis to assess the contribution of production parameters to the CF. Finally, we performed a literature review to compare these results with other production systems. Results show that emissions from enteric fermentation, concentrated feed production and (organic and mineral) fertilizer application are the three main sources of impact. Milk yield is a key production feature for the determination of emissions. The average CF is 0.83 kg CO 2 /kg raw milk. At each milk yield level, the farms are approximately homogeneous. Compared with other studies, “Vacas Felizes” milk has a lower CF than 80 (out of 84) published CFs and on average it is approximately 32% lower.

Suggested Citation

  • Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3658-:d:175291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castanheira, É.G. & Dias, A.C. & Arroja, L. & Amaro, R., 2010. "The environmental performance of milk production on a typical Portuguese dairy farm," Agricultural Systems, Elsevier, vol. 103(7), pages 498-507, September.
    2. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Characterizing Livestock Production in Portuguese Sown Rainfed Grasslands: Applying the Inverse Approach to a Process-Based Model," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    3. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    4. Tiago G. Morais & Ricardo F. M. Teixeira & Tiago Domingos, 2018. "The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    5. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    6. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    7. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    8. Ricardo F. M. Teixeira & Tiago G. Morais & Tiago Domingos, 2018. "A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    9. O’Brien, Donal & Shalloo, Laurence & Patton, Joe & Buckley, Frank & Grainger, Chris & Wallace, Michael, 2012. "A life cycle assessment of seasonal grass-based and confinement dairy farms," Agricultural Systems, Elsevier, vol. 107(C), pages 33-46.
    10. Lovett, D.K. & Shalloo, L. & Dillon, P. & O'Mara, F.P., 2006. "A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime," Agricultural Systems, Elsevier, vol. 88(2-3), pages 156-179, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Characterizing Livestock Production in Portuguese Sown Rainfed Grasslands: Applying the Inverse Approach to a Process-Based Model," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    2. Ricardo F. M. Teixeira & Tiago G. Morais & Tiago Domingos, 2018. "A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    3. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    4. Tiago G. Morais & Ricardo F. M. Teixeira & Tiago Domingos, 2018. "The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    5. Vera B. Raposo & Luís Silva & Sílvia Quadros, 2022. "Azorean Vascular Plants with Potential Use in Constructed Wetlands with Horizontal Subsurface Flow," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    6. Marques, Gonçalo M. & Teixeira, Carlos M.G.L. & Sousa, Tânia & Morais, Tiago G. & Teixeira, Ricardo F.M. & Domingos, Tiago, 2020. "Minimizing direct greenhouse gas emissions in livestock production: The need for a metabolic theory," Ecological Modelling, Elsevier, vol. 434(C).
    7. Piotr Bórawski & Adam Pawlewicz & Andrzej Parzonko & Jayson, K. Harper & Lisa Holden, 2020. "Factors Shaping Cow’s Milk Production in the EU," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
    8. Ricardo F.M. Teixeira & Tiago Domingos, 2019. "Current Practice and Future Perspectives for Livestock Production and Industrial Ecology," Sustainability, MDPI, vol. 11(15), pages 1-5, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago G. Morais & Ricardo F. M. Teixeira & Tiago Domingos, 2018. "The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    2. Kim, Daesoo & Stoddart, Nick & Rotz, C. Alan & Veltman, Karin & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Aguirre-Villegas, Horacio , 2019. "Analysis of beneficial management practices to mitigate environmental impacts in dairy production systems around the Great Lakes," Agricultural Systems, Elsevier, vol. 176(C).
    3. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    4. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    5. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    6. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    7. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    8. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    9. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    10. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    11. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    12. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    13. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    14. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    15. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).
    16. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    17. Ricardo F.M. Teixeira & Lúcia Barão & Tiago G. Morais & Tiago Domingos, 2018. "“BalSim”: A Carbon, Nitrogen and Greenhouse Gas Mass Balance Model for Pastures," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    18. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    19. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    20. Ricardo F.M. Teixeira & Tiago Domingos, 2019. "Current Practice and Future Perspectives for Livestock Production and Industrial Ecology," Sustainability, MDPI, vol. 11(15), pages 1-5, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3658-:d:175291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.