IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4437-d185819.html
   My bibliography  Save this article

Characterizing Livestock Production in Portuguese Sown Rainfed Grasslands: Applying the Inverse Approach to a Process-Based Model

Author

Listed:
  • Tiago G. Morais

    (MARETEC—Marine, Environment and Technology Centre, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Ricardo F. M. Teixeira

    (MARETEC—Marine, Environment and Technology Centre, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Nuno R. Rodrigues

    (Terraprima—Serviços Ambientais, Sociedade Unipessoal, Lda, 2135-199 Samora Correia, Portugal)

  • Tiago Domingos

    (MARETEC—Marine, Environment and Technology Centre, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

Abstract

Grasslands are a crucial resource that supports animal grazing and provides other ecosystem services. We estimated the main properties of Portuguese sown biodiverse permanent pastures rich in legumes (SBP) starting from measured data for soil organic carbon (SOC) and using the Rothamsted Carbon Model. Starting from a dataset of SOC, aboveground production (AGP) and stocking rates (SR) in SBP, we used an inverse approach to estimate root to shoot (RS) ratios, livestock dung (LD), livestock intake (LI) and the ratio between easily decomposable and resistant plant material. Results for the best fit show that AGP and belowground productivity is approximately the same (RS is equal to 0.96). Animals consume 61% of the AGP, which is within the acceptable range of protein and energy intake. Carbon inputs from dung are also within the range found in the literature (1.53 t C/livestock unit). Inputs from litter are equally distributed between decomposable and resistant material. We applied these parameters in RothC for a dataset from different sites that only comprises SOC to calculate AGP and SR. AGP and SR were consistently lower in this case, because these pastures did not receive adequate technical support. These results highlight the mechanisms for carbon sequestration in SBP.

Suggested Citation

  • Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Characterizing Livestock Production in Portuguese Sown Rainfed Grasslands: Applying the Inverse Approach to a Process-Based Model," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4437-:d:185819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pablo Luis Peri & Yamina Micaela Rosas & Brenton Ladd & Santiago Toledo & Romina Gisele Lasagno & Guillermo Martínez Pastur, 2018. "Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    2. Andy Hector & Robert Bagchi, 2007. "Biodiversity and ecosystem multifunctionality," Nature, Nature, vol. 448(7150), pages 188-190, July.
    3. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    4. Ricardo F.M. Teixeira & Lúcia Barão & Tiago G. Morais & Tiago Domingos, 2018. "“BalSim”: A Carbon, Nitrogen and Greenhouse Gas Mass Balance Model for Pastures," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    5. Tiago G. Morais & Ricardo F. M. Teixeira & Tiago Domingos, 2018. "The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    6. Smit, H.J. & Metzger, M.J. & Ewert, F., 2008. "Spatial distribution of grassland productivity and land use in Europe," Agricultural Systems, Elsevier, vol. 98(3), pages 208-219, October.
    7. Casey, J.W. & Holden, N.M., 2006. "Quantification of GHG emissions from sucker-beef production in Ireland," Agricultural Systems, Elsevier, vol. 90(1-3), pages 79-98, October.
    8. Lindsey L. Sloat & James S. Gerber & Leah H. Samberg & William K. Smith & Mario Herrero & Laerte G. Ferreira & Cécile M. Godde & Paul C. West, 2018. "Increasing importance of precipitation variability on global livestock grazing lands," Nature Climate Change, Nature, vol. 8(3), pages 214-218, March.
    9. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    10. Monforti, F. & Lugato, E. & Motola, V. & Bodis, K. & Scarlat, N. & Dallemand, J.-F., 2015. "Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 519-529.
    11. Ricardo F. M. Teixeira & Tiago G. Morais & Tiago Domingos, 2018. "A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiago G. Morais & Ricardo F. M. Teixeira & Tiago Domingos, 2018. "The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    2. Ricardo F.M. Teixeira & Lúcia Barão & Tiago G. Morais & Tiago Domingos, 2018. "“BalSim”: A Carbon, Nitrogen and Greenhouse Gas Mass Balance Model for Pastures," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    3. Ricardo F.M. Teixeira & Tiago Domingos, 2019. "Current Practice and Future Perspectives for Livestock Production and Industrial Ecology," Sustainability, MDPI, vol. 11(15), pages 1-5, August.
    4. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo F.M. Teixeira & Tiago Domingos, 2019. "Current Practice and Future Perspectives for Livestock Production and Industrial Ecology," Sustainability, MDPI, vol. 11(15), pages 1-5, August.
    2. Tiago G. Morais & Ricardo F. M. Teixeira & Tiago Domingos, 2018. "The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    3. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    4. Ricardo F. M. Teixeira & Tiago G. Morais & Tiago Domingos, 2018. "A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    5. Ricardo F.M. Teixeira & Lúcia Barão & Tiago G. Morais & Tiago Domingos, 2018. "“BalSim”: A Carbon, Nitrogen and Greenhouse Gas Mass Balance Model for Pastures," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    6. Marques, Gonçalo M. & Teixeira, Carlos M.G.L. & Sousa, Tânia & Morais, Tiago G. & Teixeira, Ricardo F.M. & Domingos, Tiago, 2020. "Minimizing direct greenhouse gas emissions in livestock production: The need for a metabolic theory," Ecological Modelling, Elsevier, vol. 434(C).
    7. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    8. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    9. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    10. Funk, Matt, 2008. "On the Problem of Sustainable Economic Development: A Theoretical Solution to this Prisoner's Dilemma," MPRA Paper 19025, University Library of Munich, Germany, revised 08 Jun 2008.
    11. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    12. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    13. Jindřich Špička & Zdeňka Náglová, 2022. "Consumer segmentation in the meat market - The case study of Czech Republic," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(2), pages 68-77.
    14. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    15. Melanie Speck & Katrin Bienge & Lynn Wagner & Tobias Engelmann & Sebastian Schuster & Petra Teitscheid & Nina Langen, 2020. "Creating Sustainable Meals Supported by the NAHGAST Online Tool—Approach and Effects on GHG Emissions and Use of Natural Resources," Sustainability, MDPI, vol. 12(3), pages 1-13, February.
    16. Springmann, Marco & Mason-D'Croz, Daniel & Robinson, Sherman & Wiebe, Keith & Scarborough, Peter, 2016. "The health co-benefits of a global greenhouse-gas tax on food," Conference papers 332766, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Federica Salari & Chiara Marconi & Irene Sodi & Iolanda Altomonte & Mina Martini, 2025. "Environmental Sustainability of Dairy Cattle in Pasture-Based Systems vs. Confined Systems," Sustainability, MDPI, vol. 17(9), pages 1-20, April.
    18. repec:ags:aaea22:335681 is not listed on IDEAS
    19. Infante-Amate, Juan & Aguilera, Eduardo & de Molina, Manuel González, 2018. "Energy transition in Agri-food systems. Structural change, drivers and policy implications (Spain, 1960–2010)," Energy Policy, Elsevier, vol. 122(C), pages 570-579.
    20. Patricia Eustachio Colombo & Emma Patterson & Liselotte Schäfer Elinder & Anna Karin Lindroos & Ulf Sonesson & Nicole Darmon & Alexandr Parlesak, 2019. "Optimizing School Food Supply: Integrating Environmental, Health, Economic, and Cultural Dimensions of Diet Sustainability with Linear Programming," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    21. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4437-:d:185819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.