IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i15p1645-d1713501.html
   My bibliography  Save this article

Decarbonizing Agricultural Buildings: A Life-Cycle Carbon Emissions Assessment of Dairy Barns

Author

Listed:
  • Hui Liu

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Zhen Wang

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Xinyi Du

    (Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
    Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety, Hefei 230031, China)

  • Fei Qi

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Chaoyuan Wang

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Zhengxiang Shi

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

Abstract

The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full life cycle inventory of the material quantities and energy consumption for dairy barns. The LCCE was quantified from the production to end-of-life stages using the carbon equivalent of dairy barns (CEDB) as the functional unit, expressed in kg CO 2 e head −1 year −1 . A carbon emission assessment model was developed based on the “building–process–energy” framework. The LCCE of the open barn and the lower profile cross-ventilated (LPCV) barn were 152 kg CO 2 e head −1 year −1 and 229 kg CO 2 e head −1 year −1 , respectively. Operational carbon emissions (OCE) accounted for the largest share of LCCE, contributing 57% and 74%, respectively. For embodied carbon emissions (ECE), the production of building materials dominated, representing 91% and 87% of the ECE, respectively. Regarding carbon mitigation strategies, the use of extruded polystyrene boards reduced carbon emissions by 45.67% compared with stone wool boards and by 36% compared with polyurethane boards. Employing a manure pit emptying system reduced carbon emissions by 76% and 74% compared to manure scraping systems. Additionally, the adoption of clean electricity resulted in a 33% reduction in OCE, leading to an overall LCCE reduction of 22% for the open barn and 26% for the LPCV barn. This study introduces the CEDB to evaluate low-carbon design strategies for dairy barns, integrating building layout, ventilation systems, and energy sources in a unified assessment approach, providing valuable insights for the low-carbon transition of agricultural buildings.

Suggested Citation

  • Hui Liu & Zhen Wang & Xinyi Du & Fei Qi & Chaoyuan Wang & Zhengxiang Shi, 2025. "Decarbonizing Agricultural Buildings: A Life-Cycle Carbon Emissions Assessment of Dairy Barns," Agriculture, MDPI, vol. 15(15), pages 1-18, July.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:15:p:1645-:d:1713501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/15/1645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/15/1645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Zhe & Chen, Cuiying & Lou, Duo & Jiang, Jingjing & Ye, Bin, 2025. "Energy-economy-environment evaluation of building-integrated photovoltaic considering facade factors for representative megacities in China," Applied Energy, Elsevier, vol. 389(C).
    2. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    3. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    2. Emanuele Bonamente & Andrea Aquino & Andrea Nicolini & Franco Cotana, 2016. "Experimental Analysis and Process Modeling of Carbon Dioxide Removal Using Tuff," Sustainability, MDPI, vol. 8(12), pages 1-15, December.
    3. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    4. Andrea Aquino & Flavio Scrucca & Emanuele Bonamente, 2021. "Sustainability of Shallow Geothermal Energy for Building Air-Conditioning," Energies, MDPI, vol. 14(21), pages 1-30, October.
    5. Kun Mo LEE & Min Hyeok LEE, 2021. "Uncertainty of the Electricity Emission Factor Incorporating the Uncertainty of the Fuel Emission Factors," Energies, MDPI, vol. 14(18), pages 1-14, September.
    6. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    7. Leslie Ayagapin & Jean Philippe Praene, 2020. "Environmental Overcost of Single Family Houses in Insular Context: A Comparative LCA Study of Reunion Island and France," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    8. J.F. Luna-Tintos & Carlos Cobreros & Álvaro López-Escamilla & Rafael Herrera-Limones & Miguel Torres-García, 2020. "Methodology to Evaluate the Embodied Primary Energy and CO 2 Production at Each Stage of the Life Cycle of Prefabricated Structural Systems: The Case of the Solar Decathlon Competition," Energies, MDPI, vol. 13(17), pages 1-15, August.
    9. Ling Dong & Yu Wang & Hong Xian Li & Boya Jiang & Mohamed Al-Hussein, 2018. "Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    10. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    11. Chenyang Liu & Xinyao Wang & Ziming Bai & Hongye Wang & Cuixia Li, 2023. "Does Digital Technology Application Promote Carbon Emission Efficiency in Dairy Farms? Evidence from China," Agriculture, MDPI, vol. 13(4), pages 1-23, April.
    12. Débora Lopes R. Silva & Cristina Rivero-Camacho & Diana Rusu & Madelyn Marrero, 2022. "Methodology for Improving the Sustainability of Industrial Buildings via Matrix of Combinations Water and Carbon Footprint Assessment," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    13. Sara Martinez & Jose Luis Gabriel & Sergio Alvarez & Anibal Capuano & Maria del Mar Delgado, 2021. "Integral Assessment of Organic Fertilization on a Camelina sativa Rotation under Mediterranean Conditions," Agriculture, MDPI, vol. 11(4), pages 1-18, April.
    14. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Azeem Khan, 2020. "Energy Efficiency Outlook of New Zealand Dairy Farming Systems: An Application of Data Envelopment Analysis (DEA) Approach," Energies, MDPI, vol. 13(1), pages 1-14, January.
    15. Xinyi Du & Qi Wang & Yingying Zheng & Jinming Gui & Songhuai Du & Zhengxiang Shi, 2023. "Sustainable Planning Strategy of Dairy Farming in China Based on Carbon Emission from Direct Energy Consumption," Agriculture, MDPI, vol. 13(5), pages 1-15, April.
    16. Emanuele Bonamente & Andrea Aquino, 2019. "Environmental Performance of Innovative Ground-Source Heat Pumps with PCM Energy Storage," Energies, MDPI, vol. 13(1), pages 1-15, December.
    17. Ester Pujadas-Gispert & Joost G. Vogtländer & S. P. G. (Faas) Moonen, 2021. "Environmental and Economic Optimization of a Conventional Concrete Building Foundation: Selecting the Best of 28 Alternatives by Applying the Pareto Front," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    18. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    19. Emanuele Bonamente & Sara Rinaldi & Andrea Nicolini & Franco Cotana, 2017. "National Water Footprint: Toward a Comprehensive Approach for the Evaluation of the Sustainability of Water Use in Italy," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    20. Francesco Pomponi & Bernardino D’Amico & Alice M. Moncaster, 2017. "A Method to Facilitate Uncertainty Analysis in LCAs of Buildings," Energies, MDPI, vol. 10(4), pages 1-15, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:15:p:1645-:d:1713501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.