IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v81y2015ip2p498-519.html
   My bibliography  Save this article

Effectiveness of variable speed limits considering commuters’ long-term response

Author

Listed:
  • Liu, Wei
  • Yin, Yafeng
  • Yang, Hai

Abstract

This paper examines the effectiveness of variable speed limits (VSLs) on improving traffic flow efficiency and reducing vehicular emissions in a stylized setting of morning commute where a fixed number of individuals commute from home to work through the freeway with a single recurrent bottleneck. The mechanism of interest is for a VSL system to prevent the bottleneck from being activated and thus avoid detrimental capacity drop that arises at the activated bottleneck. We firstly consider a VSL system installed along the freeway towards the bottleneck, which adjusts commuters’ cruising speeds in a continuous fashion and essentially regulates the upstream flow into the bottleneck. By investigating the resulting departure-time equilibrium of commuters, we find the VSL system can eliminate the efficiency loss caused by capacity drop, and further bound its improvements on various performance measures. We then turn to a more practical VSL system, which adjusts commuters’ cruising speeds in a discrete fashion. The conditions for such a system to improve various performance measures are established and its efficiencies are bounded. Based on empirical data, we conclude that the discrete VSL system can avoid or delay capacity drop associated with an active bottleneck and thus reduce queuing delay. It can help reduce the schedule delay cost and total emissions cost. However, it is unlikely for the system to reduce total travel time, individual travel cost and social cost in this particular setting. These results shed light on the effectiveness of VSL systems on realistic freeway networks.

Suggested Citation

  • Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
  • Handle: RePEc:eee:transb:v:81:y:2015:i:p2:p:498-519
    DOI: 10.1016/j.trb.2014.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514002185
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Tseng, Yin-Yen & Verhoef, Erik T., 2008. "Value of time by time of day: A stated-preference study," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 607-618, August.
    3. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    4. Devarasetty, Prem Chand & Burris, Mark & Douglass Shaw, W., 2012. "The value of travel time and reliability-evidence from a stated preference survey and actual usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1227-1240.
    5. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    6. Matzoros, Athanasios & Van Vliet, Dirck, 1992. "A model of air pollution from road traffic, based on the characteristics of interrupted flow and junction control: Part I -- model description," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(4), pages 315-330, July.
    7. Smulders, Stef, 1990. "Control of freeway traffic flow by variable speed signs," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 111-132, April.
    8. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    9. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters,in: A Handbook of Transport Economics, chapter 9 Edward Elgar Publishing.
    10. Yang, Hai & Wang, Xiaolei & Yin, Yafeng, 2012. "The impact of speed limits on traffic equilibrium and system performance in networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1295-1307.
    11. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    12. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    13. Matzoros, Athanasios & Van Vliet, Dirck, 1992. "A model of air pollution from road traffic, based on the characteristics of interrupted flow and junction control: Part II -- model results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(4), pages 331-355, July.
    14. Lei Zhang & David Levinson, 2004. "Some Properties of Flows at Freeway Bottlenecks," Working Papers 200403, University of Minnesota: Nexus Research Group.
    15. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    16. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    17. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    18. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:kap:netspa:v:17:y:2017:i:3:d:10.1007_s11067-017-9343-4 is not listed on IDEAS
    2. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    3. Tscharaktschiew, Stefan, 2016. "The private (unnoticed) welfare cost of highway speeding behavior from time saving misperceptions," Economics of Transportation, Elsevier, vol. 7, pages 24-37.
    4. repec:eee:transe:v:103:y:2017:i:c:p:198-217 is not listed on IDEAS
    5. repec:eee:transb:v:103:y:2017:i:c:p:227-247 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:81:y:2015:i:p2:p:498-519. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.