IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v41y2007i1p82-95.html
   My bibliography  Save this article

Relation between traffic density and capacity drop at three freeway bottlenecks

Author

Listed:
  • Chung, Koohong
  • Rudjanakanoknad, Jittichai
  • Cassidy, Michael J.

Abstract

Three freeway bottlenecks, each with a distinct geometry, are shown to share a relation between vehicle density and losses in discharge flow. Each bottleneck suffered reductions in discharge once queues formed just upstream. This so-called "capacity drop" was related to the density measured over some extended-length freeway segment near each bottleneck. Pronounced increase in this density always preceded a capacity drop. For each bottleneck, the densities that coincided with capacity drops were reproducible. When normalized by a bottleneck's number of travel lanes and averaged across observation days, the density that coincided with capacity drop was even similar across bottlenecks. (These densities were nearly identical for two of the bottlenecks and the more notable difference observed for the third may be only an artifact of how the data were collected.) The findings indicate that traffic-responsive schemes to control density hold promise for increasing bottleneck discharge flows. Standardized control logic might even suffice for bottlenecks of various forms. With an eye toward future testing and deployment of such control schemes, we present and validate in an Appendix A to this paper a simple algorithm for the real-time measurement of density over freeway links of extended lengths.

Suggested Citation

  • Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
  • Handle: RePEc:eee:transb:v:41:y:2007:i:1:p:82-95
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(06)00039-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    2. Munoz, Juan Carlos & Daganzo, Carlos F, 2002. "Fingerprinting Traffic From Static Freeway Sensors," University of California Transportation Center, Working Papers qt1mf4n2w8, University of California Transportation Center.
    3. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    4. Dailey, D. J., 1993. "Travel-time estimation using cross-correlation techniques," Transportation Research Part B: Methodological, Elsevier, vol. 27(2), pages 97-107, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bish, Douglas R. & Sherali, Hanif D., 2013. "Aggregate-level demand management in evacuation planning," European Journal of Operational Research, Elsevier, vol. 224(1), pages 79-92.
    2. repec:eee:transb:v:105:y:2017:i:c:p:438-457 is not listed on IDEAS
    3. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    4. Douglas Bish & Edward Chamberlayne & Hesham Rakha, 2013. "Optimizing Network Flows with Congestion-Based Flow Reductions," Networks and Spatial Economics, Springer, vol. 13(3), pages 283-306, September.
    5. Grembek, Offer & Kim, Kwangho & Kwon, Oh Hoon & Lee, Jinwoo & Liu, Haotian & Park, Min Ju & Washington, Simon & Ragland, David & Madanat, Samer M., 2012. "Experimental Evaluation of the Continuous Risk Profile (CRP) Approach to the Current Caltrans Methodology for High Collision Concentration Location Identification," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6sg5c0ng, Institute of Transportation Studies, UC Berkeley.
    6. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    7. Leclercq, Ludovic & Laval, Jorge A. & Chiabaut, Nicolas, 2011. "Capacity drops at merges: An endogenous model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1302-1313.
    8. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    9. repec:eee:transb:v:106:y:2017:i:c:p:52-75 is not listed on IDEAS
    10. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    11. Coifman, Benjamin & Kim, Seoungbum, 2011. "Extended bottlenecks, the fundamental relationship, and capacity drop on freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 980-991, November.
    12. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    13. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    14. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    15. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    16. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    17. Richard J. Arnott & Anatolii Kokoza & Mehdi Naji, 2015. "A Model of Rush-Hour Traffic in an Isotropic Downtown Area," CESifo Working Paper Series 5465, CESifo Group Munich.
    18. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae & Chung, Koohong, 2006. "Empirical Reassessment of Traffic Operations: Freeway Bottlenecks and the Case for HOV Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt31h8z81t, Institute of Transportation Studies, UC Berkeley.
    19. repec:eee:transb:v:105:y:2017:i:c:p:507-522 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:41:y:2007:i:1:p:82-95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.