IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v41y2007i1p82-95.html
   My bibliography  Save this article

Relation between traffic density and capacity drop at three freeway bottlenecks

Author

Listed:
  • Chung, Koohong
  • Rudjanakanoknad, Jittichai
  • Cassidy, Michael J.

Abstract

Three freeway bottlenecks, each with a distinct geometry, are shown to share a relation between vehicle density and losses in discharge flow. Each bottleneck suffered reductions in discharge once queues formed just upstream. This so-called "capacity drop" was related to the density measured over some extended-length freeway segment near each bottleneck. Pronounced increase in this density always preceded a capacity drop. For each bottleneck, the densities that coincided with capacity drops were reproducible. When normalized by a bottleneck's number of travel lanes and averaged across observation days, the density that coincided with capacity drop was even similar across bottlenecks. (These densities were nearly identical for two of the bottlenecks and the more notable difference observed for the third may be only an artifact of how the data were collected.) The findings indicate that traffic-responsive schemes to control density hold promise for increasing bottleneck discharge flows. Standardized control logic might even suffice for bottlenecks of various forms. With an eye toward future testing and deployment of such control schemes, we present and validate in an Appendix A to this paper a simple algorithm for the real-time measurement of density over freeway links of extended lengths.

Suggested Citation

  • Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
  • Handle: RePEc:eee:transb:v:41:y:2007:i:1:p:82-95
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(06)00039-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    2. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    3. Dailey, D. J., 1993. "Travel-time estimation using cross-correlation techniques," Transportation Research Part B: Methodological, Elsevier, vol. 27(2), pages 97-107, April.
    4. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part II: Merges and the onset of congestion," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 159-169, February.
    5. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    6. Munoz, Juan Carlos & Daganzo, Carlos F, 2002. "Fingerprinting Traffic From Static Freeway Sensors," University of California Transportation Center, Working Papers qt1mf4n2w8, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banks, James H., 2006. "New Approach to Bottleneck Capacity Analysis: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6hm1g7s6, Institute of Transportation Studies, UC Berkeley.
    2. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    3. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    4. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    5. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    6. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    7. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    8. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    9. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
    10. Li, Zhengming & Smirnova, M.N. & Zhang, Yongliang & Smirnov, N.N. & Zhu, Zuojin, 2022. "Tunnel speed limit effects on traffic flow explored with a three lane model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 185-197.
    11. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    12. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    13. Cassidy, Michael J. & Ahn, Soyoung, 2004. "Driver Turn-Taking Behavior in Congested Freeway Merges," University of California Transportation Center, Working Papers qt06j9k7h2, University of California Transportation Center.
    14. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    15. Treiber, Martin & Kesting, Arne, 2011. "Evidence of convective instability in congested traffic flow: A systematic empirical and theoretical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1362-1377.
    16. Cassidy, Michael J & Jang, Kitae & Daganzo, Carlos F, 2008. "The Smoothing Effect of Carpool Lanes on Freeway Bottlenecks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6fk4s29c, Institute of Transportation Studies, UC Berkeley.
    17. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    18. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae, 2008. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6c69j2vv, Institute of Transportation Studies, UC Berkeley.
    19. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    20. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae & Chung, Koohong, 2006. "Empirical Reassessment of Traffic Operations: Freeway Bottlenecks and the Case for HOV Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt31h8z81t, Institute of Transportation Studies, UC Berkeley.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:41:y:2007:i:1:p:82-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.