IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Empirical Reassessment of Traffic Operations: Freeway Bottlenecks and the Case for HOV Lanes

Listed author(s):
  • Cassidy, Michael J.
  • Daganzo, Carlos F.
  • Jang, Kitae
  • Chung, Koohong
Registered author(s):

    An earlier empirical study of San Francisco Bay Area freeways concluded that HOV lanes unfavorably affect freeway traffic by creating congestion. That study attributed the observed congestion to HOV lanes and tentatively recommended their elimination over the full lengths of the freeways it examined; and even from all Bay Area freeways. It recognized, however, that its analysis is fragmentary and recommended further work to solidify its conclusions. This is logical since the study lacks a spatiotemporal analysis to pinpoint where and how congestion first forms (at bottlenecks). The present report re-examines the same set of freeway sites in spatiotemporal detail to understand more deeply how HOV lanes are affecting traffic. It enriches the data from the original study with data from neighboring detector stations, to identify: first the locations (bottlenecks) where queues are triggered; and second the role that HOV lanes play in this phenomenon. This study includes an even more detailed analysis of high-resolution video data from a bottleneck where the HOV lane initially seemed to be having an unfavorable effect. To our surprise, we found no compelling evidence that the HOV lanes were triggering delays and queues on the freeway sites in the earlier study. In all cases queues formed first at bottlenecks and, save for one questionable case, formed for reasons unrelated to the HOV lanes. This was true even on additional days that we studied. Moreover, data did not conclusively show that HOV lanes were reducing bottleneck flows or prolonging the queues; no adverse effects could be confirmed. To the contrary, and quite remarkably, the HOV lane seemed to increase the capacity of the bottleneck that was videotaped, even though that lane was underutilized. (The video data show that higher than normal discharge flows arose in the remaining lanes when the HOV lane was underutilized – enough even to compensate for that lane’s underutilization. Reassuringly, this effect had been predicted in earlier simulations.) Although the sites assessed in this and the original study may not contain bottlenecks where the HOV lane is contributing to problems, the present study recognizes that such bottlenecks exist. They are just less prevalent than originally suspected. Fortunately for society, an HOV lane can be useful in most of these cases: theory and simulations indicate that if an HOV lane is rescinded near a problematic bottleneck but is preserved on the entire queued freeway stretch upstream, the lane will neither affect the bottleneck’s discharge flow nor the delay to vehicles that pass through the bottleneck. For typical freeways with four or more lanes, delay to all vehicles would change little. The HOV lane would allow HOVs to bypass most of the congestion without significantly increasing total vehicle-hours of travel. This means that even in problematic cases, HOV lanes can usually be preserved and allowed to perform their intended societal function: reducing people-hours of travel without significantly increasing vehicle-hours of travel by favoring HOVs where freeway queues arise. To avoid increased vehicle delays, however, and perhaps even to increase bottleneck capacities, some HOV-lane installations should be modestly altered near bottlenecks. This report also describes field studies necessary to determine where and how such alterations should be deployed.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:;origin=repeccitec
    Download Restriction: no

    Paper provided by Institute of Transportation Studies, UC Berkeley in its series Institute of Transportation Studies, Research Reports, Working Papers, Proceedings with number qt31h8z81t.

    in new window

    Date of creation: 01 Dec 2006
    Handle: RePEc:cdl:itsrrp:qt31h8z81t
    Contact details of provider: Postal:
    109 McLaughlin Hall, Mail Code 1720, Berkeley, CA 94720-1720

    Phone: 510-642-3585
    Fax: 510-643-3955
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Munoz, Juan Carlos & Daganzo, Carlos F, 2002. "Fingerprinting Traffic From Static Freeway Sensors," University of California Transportation Center, Working Papers qt1mf4n2w8, University of California Transportation Center.
    2. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    3. Daganzo, Carlos F. & Laval, Jorge & Munoz, Juan Carlos, 2002. "Ten Strategies for Freeway Congestion Mitigation with Advanced Technologies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4kd6v6qf, Institute of Transportation Studies, UC Berkeley.
    4. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt31h8z81t. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.