IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i8p1000-1022.html
   My bibliography  Save this article

A kinematic wave theory of multi-commodity network traffic flow

Author

Listed:
  • Jin, Wen-Long

Abstract

A systematic understanding of traffic dynamics on road networks is crucial for many transportation studies and can help to develop more efficient ramp metering, evacuation, signal control, and other management and control strategies. In this study, we present a theory of multi-commodity network traffic flow based on the Lighthill–Whitham–Richards (LWR) model. In particular, we attempt to analyze kinematic waves of the Riemann problem for a general junction with multiple upstream and downstream links. In this theory, kinematic waves on a link can be determined by its initial condition and prevailing stationary state. In addition to a stationary state, a flimsy interior state can develop next to the junction on a link. In order to pick out unique, physical solutions, we introduce two types of entropy conditions in supply-demand space such that (i) speeds of kinematic waves should be negative on upstream links and positive on downstream links, and (ii) fair merging and First-In-First-Out diverging rules are used to prescribe fluxes from interior states. We prove that, for given initial upstream demands, turning proportions, and downstream supplies, there exists a unique critical demand level satisfying the entropy conditions. It follows that stationary states and kinematic waves on all links exist and are unique, since they are uniquely determined by the critical demand level. For a simple model of urban or freeway intersections with four upstream and four downstream links, we demonstrate that theoretical solutions are consistent with numerical ones from a multi-commodity Cell Transmission Model. In a sense, the proposed theory can be considered as the continuous version of the multi-commodity Cell Transmission Model with fair merging and First-In-First-Out diverging rules. Finally we discuss future research topics along this line.

Suggested Citation

  • Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:8:p:1000-1022
    DOI: 10.1016/j.trb.2012.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261512000343
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Hong K. & Szeto, W. Y., 2002. "A cell-based variational inequality formulation of the dynamic user optimal assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 421-443, June.
    2. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    3. Wu, J. H. & Chen, Y. & Florian, M., 1998. "The continuous dynamic network loading problem: a mathematical formulation and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 173-187, April.
    4. Muñoz, Juan Carlos & Daganzo, Carlos F., 2002. "The bottleneck mechanism of a freeway diverge," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 483-505, July.
    5. Castillo, J. M. Del & Benítez, F. G., 1995. "On the functional form of the speed-density relationship--II: Empirical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 391-406, October.
    6. Jin, W. L. & Zhang, H. M., 2003. "On the distribution schemes for determining flows through a merge," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 521-540, July.
    7. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.
    8. Papageorgiou, Markos, 1990. "Dynamic modeling, assignment, and route guidance in traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 24(6), pages 471-495, December.
    9. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    10. Daganzo, Carlos F., 1995. "Properties of link travel time functions under dynamic loads," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 95-98, April.
    11. Jin, Wen-Long, 2009. "Asymptotic traffic dynamics arising in diverge-merge networks with two intermediate links," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 575-595, June.
    12. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    13. Ansorge, Rainer, 1990. "What does the entropy condition mean in traffic flow theory?," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 133-143, April.
    14. Daganzo, Carlos F., 1997. "A continuum theory of traffic dynamics for freeways with special lanes," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 83-102, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smits, Erik-Sander & Bliemer, Michiel C.J. & Pel, Adam J. & van Arem, Bart, 2015. "A family of macroscopic node models," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 20-39.
    2. Jin, Wen-Long, 2015. "Point queue models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 1-16.
    3. repec:eee:transb:v:99:y:2017:i:c:p:183-204 is not listed on IDEAS
    4. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    5. Jin, Wen-Long, 2013. "Stability and bifurcation in network traffic flow: A Poincaré map approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 191-208.
    6. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    7. Jin, Wen-Long, 2015. "On the existence of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 917-929.
    8. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    9. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    10. Jin, Wen-Long, 2017. "On the stability of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 42-61.
    11. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    12. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    13. Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
    14. repec:eee:transb:v:105:y:2017:i:c:p:507-522 is not listed on IDEAS
    15. Jin, Wen-Long, 2017. "A Riemann solver for a system of hyperbolic conservation laws at a general road junction," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 21-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:8:p:1000-1022. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.