IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt6hm1g7s6.html
   My bibliography  Save this paper

New Approach to Bottleneck Capacity Analysis: Final Report

Author

Listed:
  • Banks, James H.

Abstract

A capacity analysis approach intended as an alternative to the traditional Highway Capacity Manual (HCM) method was evaluated. One- and two-stage models of pre-queue and queue discharge flow (each of which might be thought of as representing “capacity” in some sense) were developed and compared with one another and the HCM method. Two-stage models related capacity flows to intervening variables, including average time gaps (average time separations between the rear of a vehicle and the front of one following it) in the critical lane (that with the highest flow rate) and the critical lane flow ratio (the flow in the critical lane divided by the average flow per lane), and then related these intervening variables to the geometric, vehicle population, and driver population characteristics of bottleneck sites. One-stage models involved direct relationships between capacity flows and site characteristics. Differences in capacity flow among study sites were primarily the result of differences in average critical lane time gaps; however, critical lane flow ratios were also important. The performance of the one-stage and two-stage models was similar. For the sites used to develop the models, both were better able to predict pre-queue and queue discharge flows than was the HCM method. In particular, the HCM method tended to overestimate actual bottleneck flows, especially in queue discharge. However, neither type of model was successful in explaining variations in capacity flows at additional sites used for verification. Once apparently anomalous data were eliminated, the only significant explanatory variable in the models was the number of lanes. Consequently, it is recommended bottleneck capacity analyses continue to be based on existing HCM methods but that these be supplemented by use of a look-up table based on the means and standard deviations of pre-queue and queue discharge flows for sites with particular numbers of lanes.

Suggested Citation

  • Banks, James H., 2006. "New Approach to Bottleneck Capacity Analysis: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6hm1g7s6, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt6hm1g7s6
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6hm1g7s6.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part II: Merges and the onset of congestion," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 159-169, February.
    2. Banks, James H., 2003. "Average time gaps in congested freeway flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 539-554, July.
    3. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    4. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    5. Lei Zhang & David Levinson, 2004. "Some Properties of Flows at Freeway Bottlenecks," Working Papers 200403, University of Minnesota: Nexus Research Group.
    6. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shladover, Steven E. & Lu, Xiao-Yun & Cody, Delphine & Nowakowski, Christopher & Qiu, Zhijun Tony & Chow, Andy & O’Connell, Jessica & Nienhuis, Jaap & Su, Dongyan, 2010. "Development and Evaluation of Selected Mobility Applications for VII," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2rv603nv, Institute of Transportation Studies, UC Berkeley.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    2. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    3. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    4. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    5. Banks, James, 2006. "New Approach to Bottleneck Capacity Analysis: Second Interim Report, Work Accomplished During Fiscal Year 2004-2005," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4089969k, Institute of Transportation Studies, UC Berkeley.
    6. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    7. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    8. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    9. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    10. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    11. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
    12. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    13. Li, Zhengming & Smirnova, M.N. & Zhang, Yongliang & Smirnov, N.N. & Zhu, Zuojin, 2022. "Tunnel speed limit effects on traffic flow explored with a three lane model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 185-197.
    14. Anderson, Michael L. & Davis, Lucas W., 2020. "An empirical test of hypercongestion in highway bottlenecks," Journal of Public Economics, Elsevier, vol. 187(C).
    15. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    16. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    17. Zhang, Lei & Levinson, David, 2010. "Ramp metering and freeway bottleneck capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
    18. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    19. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    20. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6hm1g7s6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.