IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Estimation on stated-preference experiments constructed from revealed-preference choices

  • Train, Kenneth
  • Wilson, Wesley W.

Constructing stated-preference (sp) experiments from a choice that the respondent made in a revealed-preference setting can enhance the realism of the sp task and the efficacy of preference revelation. However, the practice creates dependence between the sp attributes and unobserved factors, contrary to the independence assumption that is maintained for standard estimation procedures. We describe a general estimation method that accounts for this non-independence and give specific examples based on standard and mixed logit specifications of utility. We show conditions under which standard estimation methods are consistent despite the non-independence. We illustrate the general methodology through an application to shippers' choice of route and mode along the Columbia/Snake River system.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

Volume (Year): 42 (2008)
Issue (Month): 3 (March)
Pages: 191-203

in new window

Handle: RePEc:eee:transb:v:42:y:2008:i:3:p:191-203
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sándor, Z. & Train, K., 2004. "Quasi-random simulation of discrete choice models," Econometric Institute Research Papers EI 2004-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  2. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
  3. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
  4. Steven Berry & James Levinsohn & Ariel Pakes, 1998. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," NBER Working Papers 6481, National Bureau of Economic Research, Inc.
  5. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," Review of Economic Studies, Wiley Blackwell, vol. 71, pages 655-679, 07.
  6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
  7. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-62, March.
  8. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
  9. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
  10. Broniarczyk, Susan M & Alba, Joseph W, 1994. " The Role of Consumers' Intuitions in Inference Making," Journal of Consumer Research, University of Chicago Press, vol. 21(3), pages 393-407, December.
  11. Shinghal, Nalin & Fowkes, Tony, 2002. "Freight mode choice and adaptive stated preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 367-378, September.
  12. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
  13. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
  14. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
  15. Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2, March.
  16. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
  17. Anas, Alex & Feng, Cheng Min, 1988. "Invariance of expected utilities in logit models," Economics Letters, Elsevier, vol. 27(1), pages 41-45.
  18. David Hensher & Nina Shore & Kenneth Train, 2006. "Water Supply Security and Willingness to Pay to Avoid Drought Restrictions," The Economic Record, The Economic Society of Australia, vol. 82(256), pages 56-66, 03.
  19. David Hensher & Nina Shore & Kenneth Train, 2005. "Households’ Willingness to Pay for Water Service Attributes," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 32(4), pages 509-531, December.
  20. Hensher, David A. & Rose, John M., 2007. "Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 428-443, June.
  21. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878.
  22. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:42:y:2008:i:3:p:191-203. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.