IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v54y2013icp164-178.html
   My bibliography  Save this article

Incorporating the influence of latent modal preferences on travel mode choice behavior

Author

Listed:
  • Vij, Akshay
  • Carrel, André
  • Walker, Joan L.

Abstract

Latent modal preferences, or modality styles, are defined as behavioral predispositions characterized by a certain travel mode or set of travel modes that an individual habitually uses. They are reflective of higher-level orientations, or lifestyles, that are hypothesized to influence all dimensions of an individual’s travel and activity behavior. The objectives of this paper are to understand and quantify different modality styles, and to show how the modality styles construct can be operationalized within the context of traditional models of travel mode choice. We employ the six-week MOBIDRIVE travel diary and estimate behavioral mixture models in which the modality style provides a behavioral rationale to the way in which unobserved heterogeneity is specified in the travel model. Our analysis consists of two stages: First, we explore the presence and types of modality styles suggested by the data through the means of a descriptive analysis. Next, we develop a model that captures the influence of modality styles on two dimensions of an individual’s travel behavior: travel mode choice for work tours and travel mode choice for non-work tours. The modality styles are specified as latent classes; heterogeneity across modality styles include both the modes considered (choice set) and the values of taste parameters. The modality style of an individual then influences all of his/her travel mode choice decisions for work and non-work tours. In addition, error components capture unobserved correlation across travel mode choice decisions made by the same individual. Results indicate the presence of habitual drivers who display a strong bias for using the automobile and multimodal individuals who exhibit variation in their modal preferences. Multimodal behavior is further distinguished by those who appear to be sensitive to travel times and those who appear to be insensitive. Estimation results further find that modality styles are strongly correlated with more long-term travel decisions and life-cycle characteristics.

Suggested Citation

  • Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
  • Handle: RePEc:eee:transa:v:54:y:2013:i:c:p:164-178
    DOI: 10.1016/j.tra.2013.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856413001304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2013.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naveen Eluru & Chandra Bhat & Ram Pendyala & Karthik Konduri, 2010. "A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices," Transportation, Springer, vol. 37(4), pages 603-626, July.
    2. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    3. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2007. "Modeling residential sorting effects to understand the impact of the built environment on commute mode choice," Transportation, Springer, vol. 34(5), pages 557-573, September.
    4. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    5. Swait, Joffre, 2009. "Choice models based on mixed discrete/continuous PDFs," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 766-783, August.
    6. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    7. André de Palma & Robin Lindsey & Emile Quinet & Robert Vickerman, 2011. "Handbook Of Transport Economics," PSE-Ecole d'économie de Paris (Postprint) halshs-00754912, HAL.
    8. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    9. Daniel McFadden, 2001. "Economic Choices," American Economic Review, American Economic Association, vol. 91(3), pages 351-378, June.
    10. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    11. Choo, Sangho & Mokhtarian, Patricia L., 2004. "What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 201-222, March.
    12. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    13. Cirillo, C. & Axhausen, K.W., 2006. "Evidence on the distribution of values of travel time savings from a six-week diary," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 444-457, June.
    14. Thøgersen, John, 2006. "Understanding repetitive travel mode choices in a stable context: A panel study approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(8), pages 621-638, October.
    15. Gaundry, Marc J. I. & Dagenais, Marcel G., 1979. "The dogit model," Transportation Research Part B: Methodological, Elsevier, vol. 13(2), pages 105-111, June.
    16. Cervero, Robert & Duncan, Michael, 2002. "Residential Self Selection and Rail Commuting: A Nested Logit Analysis," University of California Transportation Center, Working Papers qt1wg020cd, University of California Transportation Center.
    17. Timo Ohnmacht & Konrad Götz & Helmut Schad, 2009. "Leisure mobility styles in Swiss conurbations: construction and empirical analysis," Transportation, Springer, vol. 36(2), pages 243-265, March.
    18. André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), 2011. "A Handbook of Transport Economics," Books, Edward Elgar Publishing, number 12679.
    19. Cantillo, Víctor & Ortúzar, Juan de Dios, 2005. "A semi-compensatory discrete choice model with explicit attribute thresholds of perception," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 641-657, August.
    20. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    21. I Salomon & M Ben-Akiva, 1983. "The Use of the Life-Style Concept in Travel Demand Models," Environment and Planning A, , vol. 15(5), pages 623-638, May.
    22. Ben-Akiva, M. & Bolduc, D. & Bradley, M., 1993. "Estimation of Travel Choice Models with Randomly Distributed Values of Time," Papers 9303, Laval - Recherche en Energie.
    23. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Incorporating random constraints in discrete models of choice set generation," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 91-102, April.
    24. Chandra R. Bhat, 2000. "Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling," Transportation Science, INFORMS, vol. 34(2), pages 228-238, May.
    25. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    26. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What Affects Commute Mode Choice: Neighborhood Physical Structure or Preferences Toward Neighborhoods?," University of California Transportation Center, Working Papers qt4nq9r1c9, University of California Transportation Center.
    27. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    2. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    3. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    4. Ali Ardeshiri & Akshay Vij, 2019. "A lifestyle-based model of household neighbourhood location and individual travel mode choice behaviours," Papers 1902.01986, arXiv.org, revised Nov 2019.
    5. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    6. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    7. Keskisaari, Ville & Ottelin, Juudit & Heinonen, Jukka, 2017. "Greenhouse gas impacts of different modality style classes using latent class travel behavior model," Journal of Transport Geography, Elsevier, vol. 65(C), pages 155-164.
    8. Arefeh Nasri & Lei Zhang, 2019. "How Urban Form Characteristics at Both Trip Ends Influence Mode Choice: Evidence from TOD vs. Non-TOD Zones of the Washington, D.C. Metropolitan Area," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    9. Tabasi, Maliheh & Rose, John M. & Pellegrini, Andrea & Hossein Rashidi, Taha, 2024. "An empirical investigation of the distribution of travellers’ willingness-to-pay: A comparison between a parametric and nonparametric approach," Transport Policy, Elsevier, vol. 146(C), pages 312-321.
    10. Große, Juliane & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Fertner, Christian, 2018. "Exploring the role of daily “modality styles” and urban structure in holidays and longer weekend trips: Travel behaviour of urban and peri-urban residents in Greater Copenhagen," Journal of Transport Geography, Elsevier, vol. 69(C), pages 138-149.
    11. Sanjana Hossain & Md. Sami Hasnine & Khandker Nurul Habib, 2021. "A latent class joint mode and departure time choice model for the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1217-1239, June.
    12. Daziano, Ricardo A. & Achtnicht, Martin, 2014. "Accounting for uncertainty in willingness to pay for environmental benefits," Energy Economics, Elsevier, vol. 44(C), pages 166-177.
    13. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    14. Van Acker, Veronique & Mokhtarian, Patricia L. & Witlox, Frank, 2014. "Car availability explained by the structural relationships between lifestyles, residential location, and underlying residential and travel attitudes," Transport Policy, Elsevier, vol. 35(C), pages 88-99.
    15. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    16. Zhang, Junyi & Kuwano, Masashi & Lee, Backjin & Fujiwara, Akimasa, 2009. "Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 230-250, February.
    17. Andy S. Choi & Kelly S. Fielding, 2016. "Cultural Attitudes as WTP Determinants: A Revised Cultural Worldview Scale," Sustainability, MDPI, vol. 8(6), pages 1-18, June.
    18. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    19. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    20. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:54:y:2013:i:c:p:164-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.