IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v48y2013icp123-131.html
   My bibliography  Save this article

How accurate are drivers’ predictions of their own mobility? Accounting for psychological factors in the development of intelligent charging technology for electric vehicles

Author

Listed:
  • Hahnel, Ulf J.J.
  • Gölz, Sebastian
  • Spada, Hans

Abstract

Intelligent load management systems (ILMS) for electric vehicles (EVs) would make it possible to link EV use to renewable energy sources. ILMS require information about the departure time and length of EV drivers’ upcoming trips to optimize the charging process depending on the availability of renewable energy in the grid. Inaccurate information may lead to insufficient battery levels or inefficient charging processes. In a field test during two weeks 60 participants predicted the departure time and trip length of their upcoming trips after having arrived at home with their own gasoline-powered cars. Actual mobility behavior was assessed by means of logbooks and GPS tracking devices. The results show that participants are on average able to accurately predict their departure times and trip lengths although for some outliers their prediction errors would potentially have led to insufficient battery levels. The type of trip (work, leisure, shopping) significantly influenced the accuracy of mobility predictions.

Suggested Citation

  • Hahnel, Ulf J.J. & Gölz, Sebastian & Spada, Hans, 2013. "How accurate are drivers’ predictions of their own mobility? Accounting for psychological factors in the development of intelligent charging technology for electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 123-131.
  • Handle: RePEc:eee:transa:v:48:y:2013:i:c:p:123-131
    DOI: 10.1016/j.tra.2012.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856412001504
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Clark & Sean Doherty, 2010. "A multi-instrumented approach to observing the activity rescheduling decision process," Transportation, Springer, vol. 37(1), pages 165-181, January.
    2. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    3. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    4. Sean Doherty & Eric Miller, 2000. "A computerized household activity scheduling survey," Transportation, Springer, vol. 27(1), pages 75-97, February.
    5. Cecilia Jakobsson & Satoshi Fujii & Tommy Gärling, 2002. "Effects of economic disincentives on private car use," Transportation, Springer, vol. 29(4), pages 349-370, November.
    6. Diana Kusumastuti & Els Hannes & Davy Janssens & Geert Wets & Benedict Dellaert, 2010. "Scrutinizing individuals’ leisure-shopping travel decisions to appraise activity-based models of travel demand," Transportation, Springer, vol. 37(4), pages 647-661, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:48:y:2013:i:c:p:123-131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.