IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v165y2022icp76-97.html
   My bibliography  Save this article

Can MaaS change users’ travel behaviour to deliver commercial and societal outcomes?

Author

Listed:
  • Ho, Chinh Q.

Abstract

Mobility as a Service, or MaaS, is a relatively new business model that aims to disrupt the passenger transport industry by integrating existing mobility services into an intuitive smartphone app that allows everyday travellers to search, book, use, and pay for all their transport needs. In a fully integrated ecosystem, MaaS is envisaged to integrate not only travel information and payment, but also mobility services and societal goals to obtain the so-called four levels of MaaS integration. This paper empirically assesses the prospects of having a commercially viable and environmentally sustainable MaaS. Leveraging high-quality data collected by GPS-tracking technology, ticketing management systems, and survey questionnaires over the five-month in-field trial of MaaS in Sydney, this paper develops a discrete-count modelling system to quantify, for the first time, the impacts of MaaS on users’ travel behaviour and extra volume/revenue for shared modes. Based on the quantitative evidence obtained, the paper suggests a new commercial model for MaaS and identifies the likely opportunities and challenges faced by MaaS integrators.

Suggested Citation

  • Ho, Chinh Q., 2022. "Can MaaS change users’ travel behaviour to deliver commercial and societal outcomes?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 76-97.
  • Handle: RePEc:eee:transa:v:165:y:2022:i:c:p:76-97
    DOI: 10.1016/j.tra.2022.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422002324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    2. Williamson, Oliver E, 1979. "Transaction-Cost Economics: The Governance of Contractural Relations," Journal of Law and Economics, University of Chicago Press, vol. 22(2), pages 233-261, October.
    3. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    4. Chandra R. Bhat & Rajesh Paleti & Palvinder Singh, 2014. "A Spatial Multivariate Count Model For Firm Location Decisions," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 462-502, June.
    5. Wichman, Casey J., 2016. "Incentives, green preferences, and private provision of impure public goods," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 208-220.
    6. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    7. Ho, Chinh Q. & Hensher, David A. & Ellison, Richard, 2017. "Endogenous treatment of residential location choices in transport and land use models: Introducing the MetroScan framework," Journal of Transport Geography, Elsevier, vol. 64(C), pages 120-131.
    8. Ho, Chinh Q. & Hensher, David A. & Mulley, Corinne & Wong, Yale Z., 2018. "Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 302-318.
    9. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    10. Ho, Chinh Q. & Hensher, David A. & Reck, Daniel J. & Lorimer, Sam & Lu, Ivy, 2021. "MaaS bundle design and implementation: Lessons from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 339-376.
    11. Ho, Chinh Q. & Mulley, Corinne & Hensher, David A., 2020. "Public preferences for mobility as a service: Insights from stated preference surveys," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 70-90.
    12. Santos Silva, J.M.C. & Tenreyro, Silvana, 2011. "Further simulation evidence on the performance of the Poisson pseudo-maximum likelihood estimator," Economics Letters, Elsevier, vol. 112(2), pages 220-222, August.
    13. Filipe M. Santos & Kathleen M. Eisenhardt, 2005. "Organizational Boundaries and Theories of Organization," Organization Science, INFORMS, vol. 16(5), pages 491-508, October.
    14. Gerike, Regine & Gehlert, Tina & Leisch, Friedrich, 2015. "Time use in travel surveys and time use surveys – Two sides of the same coin?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 4-24.
    15. Melinda Matyas & Maria Kamargianni, 2019. "The potential of mobility as a service bundles as a mobility management tool," Transportation, Springer, vol. 46(5), pages 1951-1968, October.
    16. Caiati, Valeria & Rasouli, Soora & Timmermans, Harry, 2020. "Bundling, pricing schemes and extra features preferences for mobility as a service: Sequential portfolio choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 123-148.
    17. Guidon, Sergio & Wicki, Michael & Bernauer, Thomas & Axhausen, Kay, 2020. "Transportation service bundling – For whose benefit? Consumer valuation of pure bundling in the passenger transportation market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 91-106.
    18. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    19. Helena Strömberg & I. C. MariAnne Karlsson & Jana Sochor, 2018. "Inviting travelers to the smorgasbord of sustainable urban transport: evidence from a MaaS field trial," Transportation, Springer, vol. 45(6), pages 1655-1670, November.
    20. Storme, Tom & De Vos, Jonas & De Paepe, Leen & Witlox, Frank, 2020. "Limitations to the car-substitution effect of MaaS. Findings from a Belgian pilot study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 196-205.
    21. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923.
    22. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    23. Olaru, Doina & Mulley, Corinne & Smith, Brett & Ma, Liang, 2017. "Policy-led selection of the most appropriate empirical model to estimate hedonic prices in the residential market," Journal of Transport Geography, Elsevier, vol. 62(C), pages 213-228.
    24. Winkelmann, Rainer, 1995. "Duration Dependence and Dispersion in Count-Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 467-474, October.
    25. Mulley, Corinne & Ho, Chinh & Balbontin, Camila & Hensher, David & Stevens, Larissa & Nelson, John D. & Wright, Steve, 2020. "Mobility as a service in community transport in Australia: Can it provide a sustainable future?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 107-122.
    26. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    27. Polydoropoulou, Amalia & Pagoni, Ioanna & Tsirimpa, Athena & Roumboutsos, Athena & Kamargianni, Maria & Tsouros, Ioannis, 2020. "Prototype business models for Mobility-as-a-Service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 149-162.
    28. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Mobility as a service and private car use: Evidence from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 17-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orozco-Fontalvo, Mauricio & Moura, Filipe, 2023. "Refocusing MaaS approach: A brief," Transport Policy, Elsevier, vol. 141(C), pages 340-342.
    2. Smith, Göran & Sørensen, Claus Hedegaard, 2023. "Public-private MaaS: Unchallenged assumptions and issues of conflict in Sweden," Research in Transportation Economics, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reck, Daniel J. & Hensher, David A. & Ho, Chinh Q., 2020. "MaaS bundle design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 485-501.
    2. Kayikci, Yasanur & Kabadurmus, Ozgur, 2022. "Barriers to the adoption of the mobility-as-a-service concept: The case of Istanbul, a large emerging metropolis," Transport Policy, Elsevier, vol. 129(C), pages 219-236.
    3. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Mobility as a service and private car use: Evidence from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 17-33.
    4. Kim, Eui-Jin & Kim, Youngseo & Jang, Sunghoon & Kim, Dong-Kyu, 2021. "Tourists’ preference on the combination of travel modes under Mobility-as-a-Service environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 236-255.
    5. Ho, Chinh Q. & Hensher, David A. & Reck, Daniel J. & Lorimer, Sam & Lu, Ivy, 2021. "MaaS bundle design and implementation: Lessons from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 339-376.
    6. Dadashzadeh, Nima & Woods, Lee & Ouelhadj, Djamila & Thomopoulos, Nikolas & Kamargianni, Maria & Antoniou, Constantinos, 2022. "Mobility as a Service Inclusion Index (MaaSINI): Evaluation of inclusivity in MaaS systems and policy recommendations," Transport Policy, Elsevier, vol. 127(C), pages 191-202.
    7. Lopez-Carreiro, Iria & Monzon, Andres & Lopez-Lambas, Maria E., 2021. "Comparison of the willingness to adopt MaaS in Madrid (Spain) and Randstad (The Netherlands) metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 275-294.
    8. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    9. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
    10. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    11. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    12. Zipeng Zhang & Ning Zhang, 2021. "A Novel Development Scheme of Mobility as a Service: Can It Provide a Sustainable Environment for China?," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    13. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
    14. Maria Vittoria Corazza & Giordano Carassiti, 2021. "Investigating Maturity Requirements to Operate Mobility as a Service: The Rome Case," Sustainability, MDPI, vol. 13(15), pages 1-31, July.
    15. Gillian Harrison & Astrid Gühnemann & Simon Shepherd, 2020. "The Business Case for a Journey Planning and Ticketing App—Comparison between a Simulation Analysis and Real-World Data," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    16. Tsouros, Ioannis & Tsirimpa, Athena & Pagoni, Ioanna & Polydoropoulou, Amalia, 2021. "MaaS users: Who they are and how much they are willing-to-pay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 470-480.
    17. Paula Brezovec & Nina Hampl, 2021. "Electric Vehicles Ready for Breakthrough in MaaS? Consumer Adoption of E-Car Sharing and E-Scooter Sharing as a Part of Mobility-as-a-Service (MaaS)," Energies, MDPI, vol. 14(4), pages 1-25, February.
    18. Benjamin Maas, 2022. "Literature Review of Mobility as a Service," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    19. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    20. Zhiyuan Yu & Doudou Jin & Xiaoxiao Song & Chao Zhai & Desheng Wang, 2020. "Internet of Vehicle Empowered Mobile Media Scenarios: In-Vehicle Infotainment Solutions for the Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:165:y:2022:i:c:p:76-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.