IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v141y2020icp469-484.html
   My bibliography  Save this article

Investigating the influence of latent lifestyles on productive travels: Insights into designing autonomous transit system

Author

Listed:
  • Shamshiripour, Ali
  • Rahimi, Ehsan
  • (Kouros) Mohammadian, Abolfazl
  • Auld, Joshua

Abstract

As a special case of multitasking, travel-based multitasking typically refers to conducting a set of in-vehicle activities while traveling. Travel-based multitasking has an indisputable influence on offering a pleasant travel experience to transit users during their rides, given that they can use their travel time to perform desirable activities and gain benefits in various form. For instance, the in-activities could help the rider free up time from his/her schedule for the day (i.e., a worthwhile use of travel time). In this study, we investigate how the worthwhileness of a travel-based multitasking could be under the influence of: (1) the transit user’s lifestyle, and (2) socio-demographics, and (3) the characteristics of the transit trip. Towards this, we conducted an intercept survey focusing on the transit trips in the Chicago metropolitan area and analyzed it using latent class modeling approach. Per the results, two classes of transit users could be identified: (1) worthwhileness seekers, productively travelers and (2) leisure seekers, occasional worthwhile travelers. The results also suggest travel time, waiting time and walking distance to the transit station, and the set of in-vehicle activities as significant predictors of worthwhile use of travel time. The findings provide insights to policymakers for improving public transit systems in the current form, as well as designing an autonomous mobility system as the future form of public transit.

Suggested Citation

  • Shamshiripour, Ali & Rahimi, Ehsan & (Kouros) Mohammadian, Abolfazl & Auld, Joshua, 2020. "Investigating the influence of latent lifestyles on productive travels: Insights into designing autonomous transit system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 469-484.
  • Handle: RePEc:eee:transa:v:141:y:2020:i:c:p:469-484
    DOI: 10.1016/j.tra.2020.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420307400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Line, Tilly & Jain, Juliet & Lyons, Glenn, 2011. "The role of ICTs in everyday mobile lives," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1490-1499.
    2. Mokhtarian, Patricia L. & Salomon, Ilan, 2001. "How derived is the demand for travel? Some conceptual and measurement considerations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 695-719, September.
    3. Farber, Steven & Bartholomew, Keith & Li, Xiao & Páez, Antonio & Nurul Habib, Khandker M., 2014. "Assessing social equity in distance based transit fares using a model of travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 291-303.
    4. Schmidt, Alejandro & Ortúzar, Juan de Dios & Paredes, Ricardo D., 2019. "Heterogeneity and college choice: Latent class modelling for improved policy making," Journal of choice modelling, Elsevier, vol. 33(C).
    5. Jonathan Levine & Moira Zellner & María Arquero de Alarcón & Yoram Shiftan & Dean Massey, 2018. "The impact of automated transit, pedestrian, and bicycling facilities on urban travel patterns," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(5), pages 463-480, July.
    6. Molin, Eric & Mokhtarian, Patricia & Kroesen, Maarten, 2016. "Multimodal travel groups and attitudes: A latent class cluster analysis of Dutch travelers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 14-29.
    7. Malokin, Aliaksandr & Circella, Giovanni & Mokhtarian, Patricia L., 2019. "How do activities conducted while commuting influence mode choice? Using revealed preference models to inform public transportation advantage and autonomous vehicle scenarios," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 82-114.
    8. Duncan, Michael, 2019. "Would the replacement of park-and-ride facilities with transit-oriented development reduce vehicle kilometers traveled in an auto-oriented US region?," Transport Policy, Elsevier, vol. 81(C), pages 293-301.
    9. Mark Wardman & Glenn Lyons, 2016. "The digital revolution and worthwhile use of travel time: implications for appraisal and forecasting," Transportation, Springer, vol. 43(3), pages 507-530, May.
    10. Lyons, Glenn & Jain, Juliet & Weir, Iain, 2016. "Changing times – A decade of empirical insight into the experience of rail passengers in Great Britain," Journal of Transport Geography, Elsevier, vol. 57(C), pages 94-104.
    11. Jain, Juliet & Lyons, Glenn, 2008. "The gift of travel time," Journal of Transport Geography, Elsevier, vol. 16(2), pages 81-89.
    12. Pawlak, Jacek & Polak, John W. & Sivakumar, Aruna, 2017. "A framework for joint modelling of activity choice, duration, and productivity while travelling," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 153-172.
    13. Tommy Gärling & Kay Axhausen, 2003. "Introduction: Habitual travel choice," Transportation, Springer, vol. 30(1), pages 1-11, February.
    14. Carlo Giacomo Prato & Katrín Halldórsdóttir & Otto Anker Nielsen, 2017. "Latent lifestyle and mode choice decisions when travelling short distances," Transportation, Springer, vol. 44(6), pages 1343-1363, November.
    15. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7ng2z24q, University of California Transportation Center.
    16. Patricia Mokhtarian & Francis Papon & Matthieu Goulard & Marco Diana, 2015. "What makes travel pleasant and/or tiring? An investigation based on the French National Travel Survey," Transportation, Springer, vol. 42(6), pages 1103-1128, November.
    17. Stephen Hynes & Nick Hanley & Riccardo Scarpa, 2008. "Effects on Welfare Measures of Alternative Means of Accounting for Preference Heterogeneity in Recreational Demand Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 1011-1027.
    18. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    19. Lyons, Glenn & Urry, John, 2005. "Travel time use in the information age," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 257-276.
    20. Frei, Charlotte & Mahmassani, Hani S. & Frei, Andreas, 2015. "Making time count: Traveler activity engagement on urban transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 58-70.
    21. Imre Keseru & Cathy Macharis, 2018. "Travel-based multitasking: review of the empirical evidence," Transport Reviews, Taylor & Francis Journals, vol. 38(2), pages 162-183, March.
    22. Patricia L. Mokhtarian, 2019. "Subjective well-being and travel: retrospect and prospect," Transportation, Springer, vol. 46(2), pages 493-513, April.
    23. Balbontin, C. & Ortúzar, J. de D. & Swait, J.D., 2015. "A joint best–worst scaling and stated choice model considering observed and unobserved heterogeneity: An application to residential location choice," Journal of choice modelling, Elsevier, vol. 16(C), pages 1-14.
    24. Jia Tang & Feng Zhen & Jason Cao & Patricia L. Mokhtarian, 2018. "How do passengers use travel time? A case study of Shanghai–Nanjing high speed rail," Transportation, Springer, vol. 45(2), pages 451-477, March.
    25. Lyons, Glenn & Jain , Juliet & Susilo , Yusak O. & Atkins, Steve, 2013. "Comparing rail passengers’ travel time use in Great Britain between 2004 and 2010," Working papers in Transport Economics 2013:17, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    26. Jason Hawkins & Khandker Nurul Habib, 2019. "Integrated models of land use and transportation for the autonomous vehicle revolution," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 66-83, January.
    27. William Clayton & Juliet Jain & Graham Parkhurst, 2017. "An ideal journey: making bus travel desirable," Mobilities, Taylor & Francis Journals, vol. 12(5), pages 706-725, September.
    28. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "Normative beliefs and modality styles: a latent class and latent variable model of travel behaviour," Transportation, Springer, vol. 45(3), pages 789-825, May.
    29. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7nq9p0cv, University of California Transportation Center.
    30. Mark Wardman & Phani Chintakayala & Chris Heywood, 2020. "The valuation and demand impacts of the worthwhile use of travel time with specific reference to the digital revolution and endogeneity," Transportation, Springer, vol. 47(3), pages 1515-1540, June.
    31. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    32. Kenyon, Susan & Lyons, Glenn, 2007. "Introducing multitasking to the study of travel and ICT: Examining its extent and assessing its potential importance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(2), pages 161-175, February.
    33. Lyons, Glenn & Jain, Juliet & Holley, David, 2007. "The use of travel time by rail passengers in Great Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 107-120, January.
    34. Lavieri, Patrícia S. & Bhat, Chandra R., 2019. "Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 242-261.
    35. Giovanni Circella & Patricia L. Mokhtarian & Laura K. Poff, 2012. "A conceptual typology of multitasking behavior and polychronicity preferences," electronic International Journal of Time Use Research, Research Institute on Professions (Forschungsinstitut Freie Berufe (FFB)) and The International Association for Time Use Research (IATUR), vol. 9(1), pages 59-107, November.
    36. Vella-Brodrick, Dianne A. & Stanley, Janet, 2013. "The significance of transport mobility in predicting well-being," Transport Policy, Elsevier, vol. 29(C), pages 236-242.
    37. Shaheen, Susan PhD, 2018. "Shared Mobility: The Potential of Ride Hailing and Pooling," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt46p6n2sk, Institute of Transportation Studies, UC Berkeley.
    38. Cervero, Robert & Duncan, Michael, 2008. "Which Reduces Vehicle Travel More: Jobs-Housing Balauce or Retail-Housing Mixing?," University of California Transportation Center, Working Papers qt1s110395, University of California Transportation Center.
    39. Jason Cao, 2013. "The association between light rail transit and satisfactions with travel and life: evidence from Twin Cities," Transportation, Springer, vol. 40(5), pages 921-933, September.
    40. Wardman, Mark & Batley, Richard & Laird, James & Mackie, Peter & Bates, John, 2015. "How should business travel time savings be valued?," Economics of Transportation, Elsevier, vol. 4(4), pages 200-214.
    41. Glenn Lyons & Juliet Jain & Yusak Susilo & Stephen Atkins, 2013. "Comparing Rail Passengers' Travel Time Use in Great Britain Between 2004 and 2010," Mobilities, Taylor & Francis Journals, vol. 8(4), pages 560-579, November.
    42. Jacek Pawlak, 2020. "Travel-based multitasking: review of the role of digital activities and connectivity," Transport Reviews, Taylor & Francis Journals, vol. 40(4), pages 429-456, July.
    43. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    44. Peraphan Jittrapirom & Valeria Caiati & Anna-Maria Feneri & Shima Ebrahimigharehbaghi & María J. Alonso González & Jishnu Narayan, 2017. "Mobility as a Service: A Critical Review of Definitions, Assessments of Schemes, and Key Challenges," Urban Planning, Cogitatio Press, vol. 2(2), pages 13-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Calastri & Jacek Pawlak & Richard Batley, 2022. "Participation in online activities while travelling: an application of the MDCEV model in the context of rail travel," Transportation, Springer, vol. 49(1), pages 61-87, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Jia & Mokhtarian, Patricia L. & Zhen, Feng, 2020. "How do passengers allocate and evaluate their travel time? Evidence from a survey on the Shanghai–Nanjing high speed rail corridor, China," Journal of Transport Geography, Elsevier, vol. 85(C).
    2. Mark Wardman & Phani Chintakayala & Chris Heywood, 2020. "The valuation and demand impacts of the worthwhile use of travel time with specific reference to the digital revolution and endogeneity," Transportation, Springer, vol. 47(3), pages 1515-1540, June.
    3. Muhamad Rizki & Tri Basuki Joewono & Dimas B. E. Dharmowijoyo & Prawira Fajarindra Belgiawan, 2021. "Does multitasking improve the travel experience of public transport users? Investigating the activities during commuter travels in the Bandung Metropolitan Area, Indonesia," Public Transport, Springer, vol. 13(2), pages 429-454, June.
    4. Molin, Eric & Adjenughwure, Kingsley & de Bruyn, Menno & Cats, Oded & Warffemius, Pim, 2020. "Does conducting activities while traveling reduce the value of time? Evidence from a within-subjects choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 18-29.
    5. Choi, Sungtaek & Mokhtarian, Patricia L., 2020. "How attractive is it to use the internet while commuting? A work-attitude-based segmentation of Northern California commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 37-50.
    6. Imre Keseru & Cathy Macharis, 2018. "Travel-based multitasking: review of the empirical evidence," Transport Reviews, Taylor & Francis Journals, vol. 38(2), pages 162-183, March.
    7. Chiara Calastri & Jacek Pawlak & Richard Batley, 2022. "Participation in online activities while travelling: an application of the MDCEV model in the context of rail travel," Transportation, Springer, vol. 49(1), pages 61-87, February.
    8. Bounie, Nathan & Adoue, François & Koning, Martin & L'Hostis, Alain, 2019. "What value do travelers put on connectivity to mobile phone and Internet networks in public transport? Empirical evidence from the Paris region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 158-177.
    9. Malokin, Aliaksandr & Circella, Giovanni & Mokhtarian, Patricia L., 2019. "How do activities conducted while commuting influence mode choice? Using revealed preference models to inform public transportation advantage and autonomous vehicle scenarios," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 82-114.
    10. Lyons, Glenn & Jain, Juliet & Weir, Iain, 2016. "Changing times – A decade of empirical insight into the experience of rail passengers in Great Britain," Journal of Transport Geography, Elsevier, vol. 57(C), pages 94-104.
    11. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    12. Aliaksandr Malokin & Giovanni Circella & Patricia L. Mokhtarian, 2021. "Do millennials value travel time differently because of productive multitasking? A revealed-preference study of Northern California commuters," Transportation, Springer, vol. 48(5), pages 2787-2823, October.
    13. Pudāne, Baiba & van Cranenburgh, Sander & Chorus, Caspar G., 2021. "A day in the life with an automated vehicle: Empirical analysis of data from an interactive stated activity-travel survey," Journal of choice modelling, Elsevier, vol. 39(C).
    14. Anciaes, Paulo & Jones, Peter, 2020. "Transport policy for liveability – Valuing the impacts on movement, place, and society," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 157-173.
    15. Jinhyun Hong & David Philip McArthur & Mark Livingston, 2019. "Can Accessing the Internet while Travelling Encourage Commuters to Use Public Transport Regardless of Their Attitude?," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
    16. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    17. Sun, Shanshan & Wong, Yiik Diew, 2023. "Drivers’ attention economy and adoption to autonomous vehicle," Transport Policy, Elsevier, vol. 138(C), pages 108-118.
    18. Pawlak, Jacek & Polak, John W. & Sivakumar, Aruna, 2017. "A framework for joint modelling of activity choice, duration, and productivity while travelling," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 153-172.
    19. Kent de Grey, Robert G. & Werner, Carol M. & Lilja Lohnes, Kate, 2018. "Strengthening proenvironmental intentions: Intrinsic interest may support use of transport alternatives to driving alone," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 260-274.
    20. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:141:y:2020:i:c:p:469-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.