IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v215y2025ics0040162525001337.html
   My bibliography  Save this article

Artificial intelligence vs. public administrators: Public trust, efficiency, and tolerance for errors

Author

Listed:
  • Bao, Haixu
  • Liu, Wenfei
  • Dai, Zheng

Abstract

This study develops and empirically examines an integrative systems framework of public trust in artificial intelligence (AI) in the public sector, grounded in Luhmann's theory of systemic trust. Through a methodologically rigorous survey experiment, we manipulated administrator/AI capabilities across computational-audit and conversational-advisory scenarios to investigate context-dependent trust dynamics. Findings reveal significant variation in public trust across usage contexts, with respondents demonstrating higher trust in AI for computational tasks, while preferring human administrators for conversational settings. Notably, our results challenge conventional assumptions about AI trust fragility, as evidence of AI mistakes did not engender disproportionate distrust relative to naturally imperfect humans. The study further demonstrates that improved efficiency can mitigate context-specific distrust stemming from AI errors in computational scenarios, though this effect was not observed in conversational contexts. By elucidating these nuanced, context-dependent dynamics of public trust towards algorithmic governance, this research contributes to both theoretical understanding and practical implementation. It provides policymakers with targeted, evidence-based guidance for cultivating appropriate trust when embedding AI technologies in the public sector through context-sensitive design approaches and governance practices. Future research should explore contingent formulations of public trust and its evolution across AI system lifecycles within diverse cultural and institutional environments.

Suggested Citation

  • Bao, Haixu & Liu, Wenfei & Dai, Zheng, 2025. "Artificial intelligence vs. public administrators: Public trust, efficiency, and tolerance for errors," Technological Forecasting and Social Change, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:tefoso:v:215:y:2025:i:c:s0040162525001337
    DOI: 10.1016/j.techfore.2025.124102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162525001337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2025.124102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:215:y:2025:i:c:s0040162525001337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.