IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v1y1990i2p263-289.html
   My bibliography  Save this article

Dynamic factor demand models, productivity measurement, and rates of return: Theory and an empirical application to the US Bell System

Author

Listed:
  • Nadiri, M. Ishaq
  • Prucha, Ingmar R.

Abstract

Prucha and Nadiri (1982,1986,1988) introduced a methodology to estimate systems of dynamic factor demand that allows for considerable flexibility in both the choice of the functional form of the technology and the expectation formation process. This paper applies this methodology to estimate the production structure, and the demand for labor, materials, capital and R&D by the U.S. Bell System. The paper provides estimates for short-, intermediate- and long-run price and output elasticities of the inputs, as well as estimates on the rate of return on capital and R&D. The paper also discusses the issue of the measurement of technical change if the firm is in temporary rather than long-run equilibrium and the technology is not assumed to be linear homogeneous The paper provides estimates for input and output based technical change as well as for returns to scale. Furthermore, the paper gives a decomposition of the traditional measure of total factor productivity growth.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nadiri, M. Ishaq & Prucha, Ingmar R., 1990. "Dynamic factor demand models, productivity measurement, and rates of return: Theory and an empirical application to the US Bell System," Structural Change and Economic Dynamics, Elsevier, vol. 1(2), pages 263-289, December.
  • Handle: RePEc:eee:streco:v:1:y:1990:i:2:p:263-289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0954-349X(90)90005-S
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nadiri, M. Ishaq & Prucha, Ingmar R., 1982. "Formulation and Estimation of Dynamic Factor Demand Equations Under Non-Static Expectations: A Finite Horizon Model," Working Papers 82-22, C.V. Starr Center for Applied Economics, New York University.
    2. Morrison, Catherine J., 1986. "Productivity measurement with non-static expectations and varying capacity utilization : An integrated approach," Journal of Econometrics, Elsevier, vol. 33(1-2), pages 51-74.
    3. Kollintzas, Tryphon, 1986. "A non-recursive solution for the linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 10(1-2), pages 327-332, June.
    4. Lars Peter Hansen & Thomas J. Sargent, 1980. "Linear rational expectations models for dynamically interrelated variables," Working Papers 135, Federal Reserve Bank of Minneapolis.
    5. Hulten, Charles R., 1986. "Productivity change, capacity utilization, and the sources of efficiency growth," Journal of Econometrics, Elsevier, vol. 33(1-2), pages 31-50.
    6. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    7. Bitros, George C & Kelejian, Harry H, 1976. "A Stochastic Control Approach to Factor Demand," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(3), pages 701-717, October.
    8. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    9. Hansen, Lars Peter & Sargent, Thomas J., 1980. "Formulating and estimating dynamic linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 7-46, May.
    10. Nadiri, M Ishaq & Schankerman, M A, 1981. "Technical Change, Returns to Scale, and the Productivity Slowdown," American Economic Review, American Economic Association, vol. 71(2), pages 314-319, May.
    11. Epstein, Larry G. & Yatchew, Adonis J., 1985. "The empirical determination of technology and expectations : A simplified procedure," Journal of Econometrics, Elsevier, vol. 27(2), pages 235-258, February.
    12. Pierre A. Mohnen & M. Ishaq Nadiri & Ingmar R. Prucha, 1984. "R&D, Production Structure, and Productivity Growth in the U.S., Japaneseand German Manufacturing Sectors," NBER Working Papers 1264, National Bureau of Economic Research, Inc.
    13. Morrison, C. J. & Berndt, E. R., 1981. "Short-run labor productivity in a dynamic model," Journal of Econometrics, Elsevier, vol. 16(3), pages 339-365, August.
    14. Prucha, Ingmar R. & Nadiri, M. Ishaq, 1986. "A comparison of alternative methods for the estimation of dynamic factor demand models under non-static expectations," Journal of Econometrics, Elsevier, vol. 33(1-2), pages 187-211.
    15. Lau, Lawrence J., 1976. "A characterization of the normalized restricted profit function," Journal of Economic Theory, Elsevier, vol. 12(1), pages 131-163, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Hines, Jr., 1994. "No Place Like Home: Tax Incentives and the Location of R&D by American Multinationals," NBER Chapters,in: Tax Policy and the Economy, Volume 8, pages 65-104 National Bureau of Economic Research, Inc.
    2. Bloch, Harry & Tang, Sam Hak Kan, 2007. "The effects of exports, technical change and markup on total factor productivity growth: Evidence from Singapore's electronics industry," Economics Letters, Elsevier, vol. 96(1), pages 58-63, July.
    3. M. Ishaq Nadiri & Ingmar Prucha, 2001. "Dynamic Factor Demand Models and Productivity Analysis," NBER Chapters,in: New Developments in Productivity Analysis, pages 103-172 National Bureau of Economic Research, Inc.
    4. Elena Ketteni & Theofanis Mamuneas & Panos Pashardes, 2013. "ICT and Energy Use: Patterns of Substitutability and Complementarity in Production," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 7(1), pages 63-86, June.
    5. Prucha, Ingmar R. & Nadiri, M. Ishaq, 1996. "Endogenous capital utilization and productivity measurement in dynamic factor demand models Theory and an application to the U.S. electrical machinery industry," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 343-379.
    6. Giannis Karagiannis & George Mergos, 2000. "Total Factor Productivity Growth and Technical Change in a Profit Function Framework," Journal of Productivity Analysis, Springer, vol. 14(1), pages 31-51, July.
    7. Pierre Lasserre & Pierre Ouellette, 1999. "Dynamic Factor Demands and Technology Measurement under Arbitrary Expectations," Journal of Productivity Analysis, Springer, vol. 11(3), pages 219-241, June.
    8. Khayyat, Nabaz T. & Lee, Jongsu & Lee, Jeong-Dong, 2014. "How ICT Investment Influences Energy Demand in South Korea and Japan?," MPRA Paper 55454, University Library of Munich, Germany.
    9. Gordon, Stephen, 1996. "How long is the firm's forecast horizon?," Journal of Economic Dynamics and Control, Elsevier, vol. 20(6-7), pages 1145-1176.
    10. Nadiri, M. Ishaq & Prucha, Ingmar R., 1997. "Sources of growth of output and convergence of productivity in major OECD countries," International Journal of Production Economics, Elsevier, vol. 52(1-2), pages 133-146, October.
    11. James R. Hines, Jr. & R. Glenn Hubbard & Joel Slemrod, 1993. "On the Sensitivity of R&D to Delicate Tax Changes: The Behavior of U. S. Multinationals in the 1980s," NBER Chapters,in: Studies in International Taxation, pages 149-194 National Bureau of Economic Research, Inc.
    12. Nadiri, M. Ishaq & Nandi, Banani, 1997. "The changing structure of cost and demand for the U.S. telecommunications industry," Information Economics and Policy, Elsevier, vol. 9(4), pages 319-347, December.
    13. M. Ishaq Nadiri, 1993. "Innovations and Technological Spillovers," NBER Working Papers 4423, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:1:y:1990:i:2:p:263-289. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.