IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i7p1383-1387.html
   My bibliography  Save this article

Canonical higher-order kernels for density derivative estimation

Author

Listed:
  • Henderson, Daniel J.
  • Parmeter, Christopher F.

Abstract

In this note we present νth-order kernel density derivative estimators using canonical higher-order kernels. These canonical rescalings uncouple the choice of kernel and scale factor. This approach is useful for selection of the order of the kernel in a data-driven procedure as well as for visual comparison of kernel estimates.

Suggested Citation

  • Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Canonical higher-order kernels for density derivative estimation," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1383-1387.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1383-1387
    DOI: 10.1016/j.spl.2012.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212000855
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:taf:gnstxx:v:22:y:2010:i:2:p:219-235 is not listed on IDEAS
    2. Abadir, Karim M. & Lawford, Steve, 2004. "Optimal asymmetric kernels," Economics Letters, Elsevier, vol. 83(1), pages 61-68, April.
    3. Hansen, Bruce E., 2005. "Exact Mean Integrated Squared Error Of Higher Order Kernel Estimators," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1031-1057, December.
    4. Kairat Mynbaev & Carlos Martins-Filho, 2010. "Bias reduction in kernel density estimation via Lipschitz condition," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 219-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eme:aecozz:s0731-905320160000036026 is not listed on IDEAS
    2. Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Normal reference bandwidths for the general order, multivariate kernel density derivative estimator," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2198-2205.
    3. Kairat Mynbaev & Carlos Martins-Filho & Aziza Aipenova, 2016. "A Class of Nonparametric Density Derivative Estimators Based on Global Lipschitz Conditions," Advances in Econometrics,in: Essays in Honor of Aman Ullah, volume 36, pages 591-615 Emerald Publishing Ltd.

    More about this item

    Keywords

    Derivative estimation; AMISE;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1383-1387. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.